Snijder Filtertechniek bv

KLEMMEN KLEMBEUGEL CLAMPS


Heeft u vragen neem dan contact met ons op. We helpen u graag verder.

+31 (0)38 477 3800

info@snijderfiltertechniek.nl

Whatsapp: 06 1997 5550

Catalogue 1 STAUFF Clamps

Germany

Walter Stauffenberg GmbH & Co. KG Im Ehrenfeld 4 58791 Werdohl

www.stauff.com

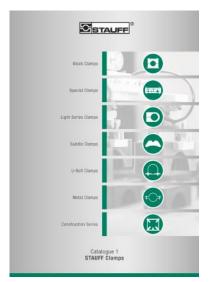
STAUFF products and services are globally available through wholly-owned subsidiaries and a tight network of authorised distributors and representatives in all major industrial regions of the world.

You can find detailed contact information on the last two pages of this product catalogue or at www.stauff.com/contact.

Please note: Unless otherwise stated, all data and figures in this product catalogue are approximate values and are only valid as references, which are not binding (also in respect to any third parties' rights of protection) and thus do not release the customer / user from checking and testing the suitability of the products for the foreseen purposes. Therefore, data and figures can only be used in a limited sense for construction purposes.

The application of the products is beyond the control possibilities of the manufacturer and, therefore, is exclusively subject to the responsibility of the customer / user.

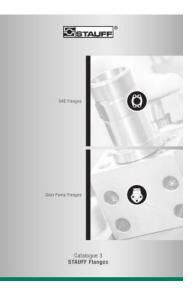
In the event that a liability is nevertheless considered, any compensation will be limited to the value of the goods supplied by the manufacturer and used by the customer / user. As a matter of course, the manufacturer guarantees the perfect quality of all products in accordance with the General Terms and Conditions of Business and Sale.


Subject to modifications due to the ongoing development and improvement of the products.

With the publication of this product catalogue, previous editions are no longer valid.

		®
<u></u>	STAUFF	

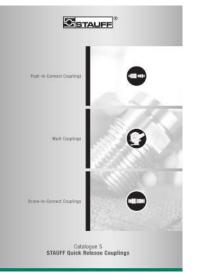
Introduction	4 - 11
Standard Series according to DIN 3015, Part 1	12 - 33
Heavy Series according to DIN 3015, Part 2	34 - 51
Twin Series according to DIN 3015, Part 3	52 - 63
Heavy Twin Series	64 - 69
STAUFF ACT Clamps: Anti-Corrosion Technology	70 - 89
STAUFF SWG: Stud Welding System	96 - 101
Notes	96 - 101
Custom-Designed Special Clamps	102 - 109
Light Series	110 - 119
Saddle / Piggyback Clamps	120 - 123
Flat Steel and Round Steel U-Bolt Clamps	124 - 133
Metal DIN Clamps	134 - 141
Construction Series	142 - 145
Other Types of Clamps	146 - 151
Technical Appendix	152 - 165
Appendix (Product-Specific Abbreviations / Global Contact Directory)	166 - 171


Catalogue 1 **STAUFF Clamps**

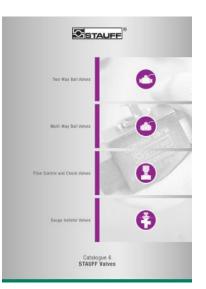
- Block Clamps
- Special Clamps
- Light Series Clamps Saddle Clamps
- U-Bolt Clamps
- Metal Clamps
- Construction Series

Catalogue 2 **STAUFF Connect**

- Tube Connectors
- Assembly Tools and Devices


Catalogue 3 **STAUFF Flanges**

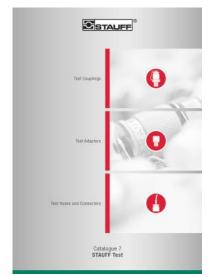
 SAE Flanges Gear Pump Flanges


Catalogue 4 STAUFF **Hose Connectors**

- Hose Connectors
- High-Pressure Hose Connectors

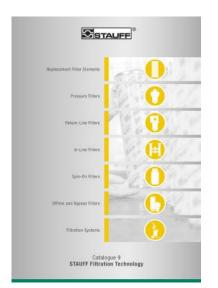
Catalogue 5 STAUFF **Quick Release Couplings**

- Push-to-Connect Couplings
- Multi Couplings
- Screw-to-Connect Couplings

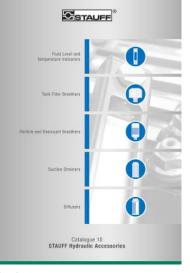


Catalogue 6 **STAUFF Valves**

- Two-Way Ball Valves
- Multi-Way Ball Valves
- Flow Control and Check Valves
- Gauge Isolator Valves


Catalogue 7 **STAUFF** Test

- Test Couplings
- Test Adaptors
- Test Hoses and Connectors


Catalogue 8 **STAUFF Diagtronics**

- Pressure Gauges
- Hydraulic Testers
- Oil Analysis Equipment

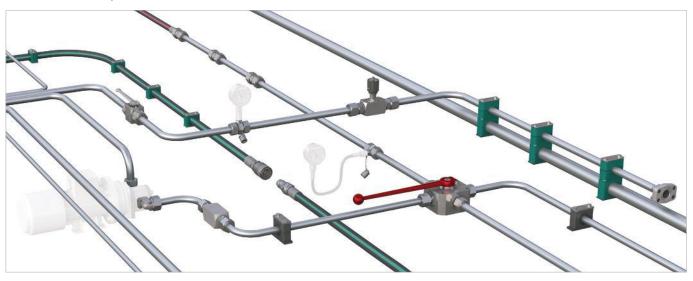
Catalogue 9 **STAUFF Filtration Technology**

- Replacement Filter Elements
- Pressure Filters
- Return-Line Filters
- In-Line Filters
- Spin-On Filters
- Offline and Bypass Filters
- Filtration Systems

Catalogue 10 **STAUFF Hydraulic Accessories**

- Fluid Level and Temperature Indicators
- Tank Filler Breathers
- Giant and Desiccant Air Breathers
- Suction Strainers
- Diffusors

For more than 50 years, the companies of STAUFF Group have been developing, manufacturing and distributing pipework equipment and hydraulic components for mechanical and plant engineering and for service and industrial maintenance.


In addition to mobile and industrial hydraulic machinery, typical applications also include commercial and special purpose vehicles, rail transportation and energy technology. Likewise, STAUFF products are used in marine, oil and gas applications and in the process, food and chemical industries. The overall range currently includes about 50000 standard products as well as numerous special and system solutions according to customer's specifications or based on our in-house development.

All STAUFF products undergo relevant testing in accordance with international regulations and are governed by the high standards of the in-house quality management system. Furthermore, many items have received certifications and approvals from various international institutes, organisations and authorities who have independently confirmed the quality and performance of the products. Wholly-owned manufacturing, sales and service facilities in 18 countries and a tight global network of authorised distribution partners ensure high presence and service paired with a maximum of availability.

Quality Management – ISO 9001:2015 Environmental Management – ISO 14001:2015 Safety Management – ISO 45001:2018 Energy Management – ISO 50001:2018

STAUFF LINE Components

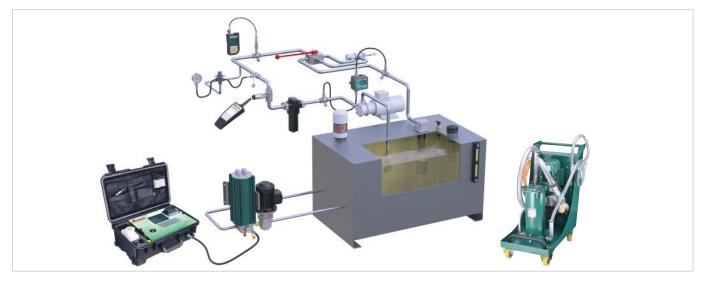
With the seven dedicated STAUFF Line product groups

- STAUFF Clamps
- STAUFF Connect
- STAUFF Flanges
- STAUFF Hose Connectors
- STAUFF Quick Release Couplings
- STAUFF Valves
- STAULT Valve
 STAULT Valve

from own, in-house development and manufacturing, the companies of the STAUFF Group provide a comprehensive range of components for fastening and connecting pipes, tubes and hoses for mobile and industrial hydraulic applications and many other industries.

The portfolio is completed by components for shutting-off, regulating, throttling and measuring fluid media.

In order to perfectly match each other, STAUFF Line products are designed and offered on a high, uniform level of quality. A large proportion of the range made from steel comes as standard with the premium STAUFF Zinc/Nickel surface coating, which is also optionally available for many of the other components.


This coating offers the most reliable surface protection far beyond the previous market standards – even after transport, handling and assembly of the components – and meets all current legal requirements.

If desired, Original Equipment Manufacturers can be supported with value-added services, from **technical consultation** to **pre-assembly, assembly and kitting** as well as **logistics services**:

- Support with the selection of suitable standard components and ordering options; provision of customised solutions according to customer's specifications or based on our in-house development – from prototyping to large scale production
- Analysis and optimization of existing and design and developments of new systems aimed at increasing the efficiency and performance of machines and equipment and creating value for customers by reducing the total cost
- Pre-assembly, assembly and kitting of individual components to customer-specific system modules
- Individually coordinated procurement solutions (e.g. web shop and electronic data interchange) and supply models (e.g. from warehousing of customised components to Kanban logistics and just-in-time delivery of pre-fabricated system modules to the assembly lines of the customers) aimed at optimising material flows

Aligned with the needs of the market, the product groups

- STAUFF Test
- STAUFF Diagtronics
- STAUFF Filtration Technology
- STAUFF Hydraulic Accessories

include a comprehensive range of analogue and digital measuring equipment and devices, filtration systems and replacement filter elements as well as accessories for the construction of tanks, reservoirs, power packs and gear boxes in mobile and industrial hydraulics. The offer is completed by relevant value-added services:

- Support with the selection of suitable components and ordering options; provision of customised solutions according to customer's specifications or based on our in-house development – from prototyping to large scale production
- Analysis of existing hydraulic circuits aimed at filtration systems, tank components and monitoring devices that perfectly match to the specific requirements, and developing integrated concepts to increase the efficiency and performance of machines and equipment
- Individually coordinated procurement solutions and supply models

STAUFF Clamps

For more than 50 years, STAUFF Clamps symbolise quick and easy as well as secure installation of pipes, tubes, hoses, cables and other flexible and rigid components with outside diameters up to 1016 mm / 40.00 inch.

Their vibration and noise reducing features are appreciated as being an important contribution to environmental protection and occupational health and safety.

The processing of fire-proof clamp body materials, tested and approved according to several international fire-protection standards (such as BS 6853, EN 45545-2, UL 94) is only one of the many particular strengths of STAUFF.

STAUFF guarantees prompt service, even for customised solutions according to customer's specifications or based on our in-house development. For selected types and series, independent certificates and approvals can be provided:

- American Bureau of Shipping
- Bureau Veritas
- Department of the Navy, New York
- Germanischer Lloyd
- Lloyd's Register of Shipping
- Registro Italiano Navale
- Technischer ÜberwachungsvereinUnited States Coast Guard

For the finishing of the range of pipe, tube, hose and cable clamps as well as metal hardware in carbon steel, STAUFF relies on the STAUFF Zinc/Nickel surface coating which has proven successful for many years. It provides reliable surface protection – even after transport, handling and assembly – and meets all current legal requirements.

Versions in stainless steel V2A and V4A are generally available from stock. Alternative materials and surfaces are available on request.

STAUFF Zinc/Nickel Coating

Layers Sealing

Passivation Zinc/Nickel Steel

With at least 1200 hours resistance against red rust, the STAUFF Zinc/Nickel surface coating offers excellent surface protection – even after transport, handling and assembly. This was confirmed by testing in the salt-spray chamber according to DIN EN ISO 9227.

Users across all industries and applications benefit from sophisticated technology, which has been developed for and used by the very demanding automotive industry for many years now and that is already the proven standard for a large proportion of STAUFF components since 2007.

- At least 1200 hours resistance to red rust / base metal corrosion under practical conditions in the salt-spray chamber according to DIN EN ISO 9227
- · White rust occurs only by way of a slight grey haze
- Surpassing the requirements of the corrosion protection class K5 as defined by the VDMA, the German Engineering Association (360 hours resistance to white rust / 720 hours resistance to red rust)
- Free of hexavalent chrome Cr(VI)
- ELV compliant according to 2000/53/EC (End of Life Vehicles Directive)
- REACH compliant according to 1907/2006/EC (Registration, Evaluation, Authorisation and Restriction of Chemicals)
- RoHS compliant according to 2002/95/EC (Restrictions of the Use of Hazardous Substances)

- Appealing colour scheme with a bright semi-gloss surface finish – comparable to Stainless Steel
- Significantly reduced tendency to corrosion by contact with other metals (such as Aluminium and Stainless Steel)
- Improved abrasion resistance due to the ductility / plastic deformability of the coating
- Little to no risk of triggering allergies nickel release is down to only a fraction of the statutory limits relating to objects which come into direct and prolonged contact with the skin (independent results of the reference test method according DIN EN 1811 are available on request)
- Good paint adhesion properties
- Resistance against all commonly used hydraulic media

www.stauff.com/1/en/#9

www.stauff.com/catalogues

The STAUFF online catalogue centre at www.stauff.com/catalogues provides fast and direct access to digital versions of this as well as other STAUFF product catalogues in all available languages.

Online Page-Flip Catalogues

- Easy navigation through index or the powerful full text search functionality
- Contents can be shared and forwarded by e-mail, printed or downloaded and saved in PDF file format
- Also suitable for mobile devices

Download Catalogues

- Download entire product catalogues and save them in PDF file format

Catalogue Request

- Contact form to request printed copies of the product catalogue as well as digital copies on USB stick

The fastest way to the online page-flip catalogue:

The links that can be found at the bottom edge of all pages of this product catalogue will lead you directly to the corresponding page in the online page-flip catalogue.

In doing so, contents can be searched, shared and fo Sá

Scan the QR code next to the direct link with the camera of your mobile device* and also use the functions in this way.

* may require a suitable app

prwarded by e-mail, printed or downloaded and aved in PDF file format.		
10	Catalogue 1 • Edition 08/2022	www.stauff.com/1/en/#10

www.stauff.com

With the STAUFF Digital Platform available at www.stauff.com, commercial customers and users of STAUFF products can not only inform themselves in all detail about the 50000 components typically available from stock, but also directly purchase these online without complex registration.

Main Functionalities of the STAUFF Digital Platform:

Check stock availability and pricing for STAUFF products in real time

Cross references Search by article designations of other manufacturers / suppliers

Live chat Get directly in touch with the STAUFF customer service and sales team

CAD database

Download 3D models and 2D drawings for STAUFF products

General information about the companies of STAUFF Group, latest business and product news as well as complete global contact details also be available.

Advantages as a Registered User of the STAUFF Digital Platform:

Purchase STAUFF products

Taking customer-specific pricing and delivery conditions into account

Ordering w/o searching

Quick ordering by entering article number, quantity and requested delivery date

File upload Direct upload of orders with multiple positions in CSV or Excel file format

Notepad function

Create project lists to save interesting products for later

www.stauff.com/cad

Immediate access to and free download of 3D models and 2D drawings for a growing number of STAUFF products

www.filterinterchange.com

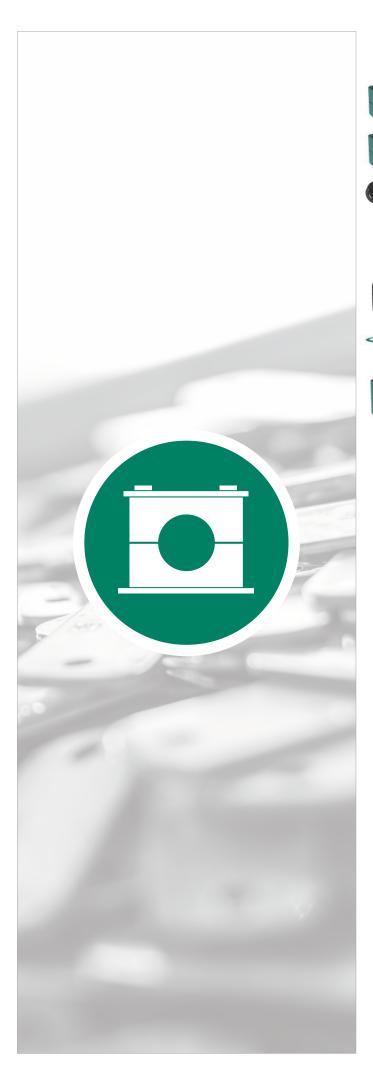
Online database for the quick and easy identification and interchange of almost all common brands and types of replacement filter elements

Follow STAUFF and keep yourself updated:

Linkedin in

You Tube

www.linkedin.com/company/stauff


Youtube www.youtube.com/stauffgroup

STAUFF Newsletters

Automatic e-mail notifications about latest news from STAUFF www.stauff.com/newsletter

	Clamp Body Profiled Inside Surface with Tension Clearance	14
	Clamp Body Smooth Inside Surface without Tension Clearance	15
	Clamp Body with Elastomer Insert	16
Ø	Noise Reduction Clamp	17
8	Clamp Body for Conduit Hoses and Cable Inserts	18
	Clamp Body Compact Design for both Compact / Regular Hydaulic Hoses	19
	Clamp Body Rectangular Design for Proximity Switches	19

-	Weld Plate	20		Cover Plate
	SP			DP
	Elongated Weld Plate		4	Hexagon Head Bolt for use with Cover Plate DP
-9 9-	SPV	20		AS
	Twin Weld Plate	21		Safety Washer (DIN 93)
0	DSP			SI
	Group Weld Plate			Safety Washer (DIN 463)
6 20	RAP	21		SI
a a	Angled Weld Plate	22	1	Socket Cap Screw
	WSP			IS
	Bridge Weld Plate		4	Slotted Head Screw
And and	BSP	22		Ц
	Clamp Body for Multi-Group Weld Plates	23	1	Hexagon Head Bolt for use with Insert ES / EP
				AS
	Multi-Group Weld Plate			Insert
(200000	RAP-MGR	23		ES / EP
	Hexagon Rail Nut	24		Safety Locking Plate
	SM			SIG
	Mounting Rail		1	Stacking Bolt
	TS	24		AF
282	Channel Rail Adaptor	25		Clamp Assemblies
and a	CRA			

STAUFF

Clamp Body - Profiled Design

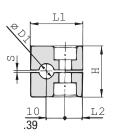
Profiled Inside Surface with Tension Clearance

Orde	ring Codes	
	p Body Body, STAUFF Group 1A	* 1*06-*PP *1*06A-*PP
One cla	mp body is consisting of two clam	p halves.
* Exact	FF Group : outside diameter Ø D1 (mm) rial code (see below)	1 06 PP
Standa	rd Materials	
	Polypropylene Colour: Green Material code: PP	
	Polypropylene Colour: Black Material code: PP-BK	
	Polyamide Colour: Black Material code: PA	
	Thermoplastic Elastomer (87 S Colour: Black Material code: SA	Shore-A)

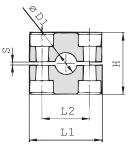
P

Aluminium Colour: Self-Colour Material code: AL (STAUFF Group 1A to 6)

See pages 154 / 155 for material properties and technical information.


Special Materials

Please contact STAUFF for further details on fire-proof clamp body materials, tested and approved according to several international fire-protection standards (such as BS 6853, EN 45545-2, UL 94 and many more).


See pages 156 / 157 for material properties and technical information.

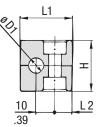
Product Features

- Proven, tested and trusted product in various markets
- Recommended for the safe installation of rigid pipes and tubes
- Available for all commonly used pipe and tube outside diameters
- Environmental protection due to vibration/noise reducing design
- Excellent weathering resistance, even under extreme conditions

STAUFF Group 1

STAUFF Group 1A to 8

Group			Diameter	Nominal	Bore	Ordering Codes	Dimen	sions			
Ë		Pipe / Tu	ibe		Copper Tube	(2 Clamp Halves)	(^{mm} /in)				
STAUFF	NIO	Ø D1 (mm)	(in)	Pipe (in)	ASTM B88 (in)	(** = Material)	11	L2	Н	S min.	Width
0,		6	(111)	(11)	(11)	(** = Material) 106-**	LI	LZ	п	5 11111.	wiutii
		6,4	1/4			106.4-**					
		8	5/16	-		108-**	28	9,5	27	0,4	30
1	0	9,5	3/8		1/4	109.5-**	1.10	.37	1.06	.02	1.18
		10	0,0	1/8	.,,.	110-**					
		12				112-**					
		6				106A- * *					
		6,4	1/4			106.4A- **					
		8	5/16			108A- * *	37	20	27	0,4	30
1A	1	9,5	3/8		1/4	109.5A- **	1.46	.79	1.06	.02	1.18
		10		1/8		110A- **					
		12				112A- **					
		12,7	1/2		3/8	212.7-**					
		13,5		1/4		213.5-**					
		14				214-**	10	00	00	0.0	00
2	2	15				215-**	42	26	33	0,6	30
		16	5/8		1/2	216-**	1.65	1.02	1.30	.02	1.18
		17,2		3/8		217.2-**					
		18				218-**					
		19	3/4			319-**					
		20				320-**					
3	3	21,3		1/2		321.3-**	50	33	36	0,6	30
		22	7/8		3/4	322-**	1.97	1.30	1.42	.02	1.18
		25				325-**					
		25,4	1			325.4-**					
		26,9		3/4		426.9-**					
		28				428-**					
4	4	28,6			1	428.6-**	59	40	42	0,6	30
		30				430-**	2.32	1.57	1.65	.02	1.18
		32				432-**					
		32	1-1/4			532-**					
		33,7		1		533.7- **					
		35			1-1/4	535-**	L				
5	5	38	1-1/2			538- **	71	52	58	0,8	30
		40				540- **	2.80	2.05	2.28	.03	1.18
		41,3			1-1/2	541.3- **					
		42		1-1/4		542- **					
		44,5	1-3/4			644.5- **					
c	6	48,3		1-1/2		648.3- **	86	66	66	0,8	30
6	6	50,8	2			650.8- **	3.39	2.60	2.60	.03	1.18
		54			2	654- **					
		57,2	2-1/4			757.2-**					
		60,3		2		760.3-**					
7	7	63,5	2-1/2			763.5-**	121	94	93	0,8	30
7	7	70	2-3/4			770-**	4.76	3.70	3.66	.03	1.18
		73		2-1/2 (ANS	SI B 36-10)	773-**					
		76,1	3		EN 10220)	776.1-**					
		88,9		3	,	888.9-**	147	120	118	0,8	30
8	8	-	4				5.79	4.72	4.65	.03	1.18
		102	4	3-1/2		8102L- **	00				


Additional outside diameters are available upon request. Please contact STAUFF for further information.

A

Clamp Body - Type H

Smooth Inside Surface without Tension Clearance

STAUFF Group 1

STAUFF Group 1A to 8

Group		Outside Diam	neter	Ordering Codes	Dimensions						
Ļ		Hose		(2 Clamp Halves)	(^{mm} / _{in})						
STAUFF	z	Ø D1									
S	DIN	(mm)	(in)	(** -H = Material)	L1	L2	Н	Width			
		6		106- ** -H							
		6,4	1/4	106.4- ** -H							
1	0	8	5/16	108- ** -H	28	9,5	26	30			
	0	9,5	3/8	109.5- ** -H	1.10	.37	1.02	1.18			
		10		110- ** -H			1				
		12		112- ** -H							
		6		106A- ** -H							
		6,4	1/4	106.4A- ** -H							
1A	4	8	5/16	108A- ** -H	37	20	26	30			
IA	1	9,5	3/8	109.5A- ** -H	1.46	.79	1.02	1.18			
		10		110A- ** -H							
		12		112A- ** -H							
		12,7	1/2	212.7- ** -H							
		13,5		213.5- ** -H	1						
		14		214- ** -H	40	00	00	00			
2	2	15		215- ** -H	42	26	32	30			
		16	5/8	216- ** -H	1.65	1.02	1.26	1.18			
		17,2		217.2- ** -H	1						
		18		218- ** -H	1						
		19	3/4	319- ** -H							
		20		320- ** -H							
3		21,3		321.3- ** -H	50	33	35,5	30			
	3	22	7/8	322- ** -H	1.97	1.30	1.40	1.18			
		25		325- ** -H							
		25,4	1	325.4- ** -H							
		26,9		426.9- ** -H							
		28		428- ** -H	59	40	41,5	30			
4	4	30		430- ** -H	2.32	1.57	1.63	1.18			
		32		432- ** -H	LIGE						
		32	1-1/4	532- ** -H							
		33,7		533.7- ** -H							
		35		535- ** -H	71	52	56,5	30			
5	5	38	1-1/2	538- ** -H	2.80	2.05	2.22	1.18			
		40	1 1/2	540- ** -H	2.00	2.00	2.22				
		40		542- ** -H							
		44,5	1-3/4	644.5- ** -H							
		48,3	1 0/4	648.3- ** -H	86	66	64,5	30			
6	6	50,8	2	650.8- ** -H	3.39	2.60	2.54	1.18			
		50,8	2	654- ** -H	0.00	2.00	2.04	1.10			
		57,2	2-1/4	757.2- ** -H							
		57,2 60,3	2-1/4	757.2- ** -H							
		63,5	2-1/2	763.5- ** -H	121	94	92	30			
7	7	63,5 70		763.5- ** -H 770- ** -H	4.76	3.70	3.62	30			
			2-3/4	770- ** -H	4.70	5.70	5.02	1.10			
		73	2								
		76,1	3	776.1- ** -H							
8	8	88,9		888.9- ** -H	147 5.79	120	116	30			
		102	4	8102L- ** -H	5.79	4.72	4.57	1.18			

Additional outside diameters are available upon request. Please contact STAUFF for further information.

Orde	ring Codes	
) Body Body, STAUFF Group 1A	*1*06-*PP-H *1*06A-*PP-H
One cla	mp body is consisting of two c	lamp halves.
* Exact	FF Group outside diameter Ø D1 (mm) ial code (see below)	1 06 РР-Н
Standa	rd Materials	
~	Polypropylene Colour: Green Material code: PP-H	
	Polypropylene Colour: Black Material code: PP-H-BK	
O	Polyamide Colour: Black Material code: PA-H	
	Thermoplastic Elastomer (Colour: Black Material code: SA-H	87 Shore-A)

See pages 154 / 155 for material properties and technical information.

Special Materials

Please contact STAUFF for further details on fire-proof clamp body materials, tested and approved according to several international fire-protection standards (such as BS 6853, EN 45545-2, UL 94 and many more).

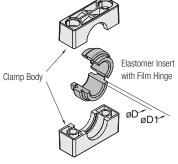
See pages 156 / 157 for material properties and technical information.

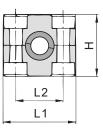
Product Features

- Proven, tested and trusted product in various markets
- Recommended for the safe installation of hoses and cables
- Chamfered edges avoid damaging of the hoses and cables
- Available for all commonly used hose and cable outside diameters
- Excellent weathering resistance, even under extreme conditions

A

Dimensional drawings: All dimensions in mm (in).





R

Clamp Body with Elastomer Insert Type RI

Ordering Codes	
Clamp Assembly *4*06-*P	P-R
One assembly is consisting of one clamp body and one i	insert.
* STAUFF Group	4
* Exact outside diameter Ø D (mm)	06
* Material code (see below)	PP-R
Clamp Body *4-*P	P-R
One clamp body is consisting of two clamp halves.	
* STAUFF Group	4
* Material code (see below)	PP-R
Elastomer Insert *RI-*06-*4	/4S
* Elastomer Insert	RI
* Exact outside diameter Ø D (mm)	06
* STAUFF Group 4 (Standard) and 4S (Heavy)	4/4S
6 (Standard) and 5S (Heavy)	6/5S

Standard Materials

Colour: Black Material code: PP-R

> **Polyamide** Colour: Black

Material code: PA-R

Elastomer Insert **Thermoplastic Elastomer** (73 Shore-A) Colour: Black

See pages 154 / 155 for material properties and technical information.

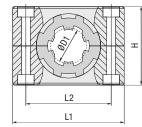
Special Materials

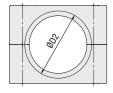
Please contact STAUFF for further details on fire-proof clamp body materials, tested and approved according to several international fire-protection standards (such as BS 6853, EN 45545-2, UL 94 and many more).

See pages 156 / 157 for material properties and technical information.

Product Features

- Proven, tested and trusted product in various markets
- Either for the extra vibration/noise reducing installation of pipes and tubes or the extra gentle installation of hoses and cables
- Available for all commonly used outside diameters
- Excellent weathering resistance, even under extreme conditions


Group 壯				Clamp Assembly	Clamp Assembly Clamp Body Insert *		Dimensions (^{mm} / _{in})					
STAUFF	DIN	Ø D (mm)	(in)	(Clamp Body + Insert)	(2 Clamp Halves)		Ø D1	L1	L2	Н	Width	
		6		406- ** -R		RI-06-4/4S						
		8	5/16	408- ** -R		RI-08-4/4S						
		10		410- ** -R		RI-10-4/4S						
		12		412- ** -R	1	RI-12-4/4S						
		12,7	1/2	412.7- ** -R		RI-12.7-4/4S				41,2 1.62		
4	4	14		414- ** -R		RI-14-4/4S	25 .98	59 2.32	40		30 1.18	
		15		415- ** -R		RI-15-4/4S						
		16	5/8	416- ** -R		RI-16-4/4S						
		17,2		417.2- ** -R		RI-17.2-4/4S						
		18		418- ** -R		RI-18-4/4S						
		19	3/4	419- ** -R		RI-19-4/4S						
		20		620- ** -R		RI-20-6/5S						
		21,3		621.3- ** -R		RI-21.3-6/5S						
		22	7/8	622- ** -R		RI-22-6/5S						
6	6	25		625- ** -R	6- ** -R	RI-25-6/5S	38	86	66	64,5	30	
0	0	26,9		626.9- ** -R	υ -ቶ ች-ከ	RI-26.9-6/5S	1.50	3.39	2.60	2.54	1.18	
		28		628- ** -R		RI-28-6/5S						
		30		630- ** -R		RI-30-6/5S						
		32	1-1/4	632- ** -R		RI-32-6/5S						


* Elastomer Inserts for Standard Series clamp bodies, STAUFF Group 4 also fit into Heavy Series clamp bodies, STAUFF Group 4S. Elastomer Inserts for Standard Series clamp bodies, STAUFF Group 6 also fit into Heavy Series clamp bodies, STAUFF Group 5S.

Additional outside diameters are available upon request. Please contact STAUFF for further information.

Catalogue 1 - Edition 08/2022

Noise Reduction Clamp Type NRC

Group Outside Diameter Pipe / Tube Ø D1 (mm) (in)		Ordering Codes Clamp Assembly Clamp Body NRC Insert (Clamp Body +				Dimensions (^{mm} / _{in})								
ST	DIN	(mm)	(in)	NRC Insert)	(2 Clamp Halves)	(2 Insert Halves)	ØD2	ØD3	L1	L2	Н	Width		
		6		206-PP-NRC		RI-NRC-6-2								
		8	5/16	208-PP-NRC		RI-NRC-8-2								
2	2	10		210-PP-NRC	2-PP-NRC	RI-NRC-10-2	25 .98	26	42 1.65	26	32 1.26	30 1.18		
		12		212-PP-NRC		RI-NRC-12-2								
		12,7	1/2	212.7-PP-NRC		RI-NRC-12.7-2								
		14		314-PP-NRC		RI-NRC-14-3								
3	3	15		315-PP-NRC	3-PP-NRC	RI-NRC-15-3	28 1.10	29 1.14	50 1.97	33 1.30	35,5 1.40	30 1.18		
		16	5/8	316-PP-NRC		RI-NRC-16-3								
	4	18		418-PP-NRC	4-PP-NRC	RI-NRC-18-4	34	35	59	40	41,5	30		
4	4	20		420-PP-NRC		RI-NRC-20-4	1.34	1.38	2.32	1.57	1.63	1.18		
		21,3		521.3-PP-NRC	5-PP-NRC	RI-NRC-21.3-5								
		22	7/8	522-PP-NRC		RI-NRC-22-5								
		25		525-PP-NRC				RI-NRC-25-5						
5	5	26,9		526.9-PP-NRC		RI-NRC-26.9-5	49 1.93	50 1.97	71 2.80	52 2.05	56,5	30 1.18		
		28		528-PP-NRC		RI-NRC-28-5								
		30		530-PP-NRC		RI-NRC-30-5								
		32	1-1/4	532-PP-NRC		RI-NRC-32-5								
		33,7		633.7-PP-NRC		RI-NRC-33.7-6								
		35		635-PP-NRC		RI-NRC-35-6								
6	6	38	1-1/2	638-PP-NRC		RI-NRC-38-6	60 2.36	61 2.40	86 3.39	66 2.60	64,5 2.54	30 1.18		
		40		640-PP-NRC		RI-NRC-40-6	2.00	2	0.00	2.00				
		42		642-PP-NRC		RI-NRC-42-6								

Additional outside diameters are available upon request. Please contact STAUFF for further information.

Product Features

- Designed for the noise and vibration reducing installation of pipes and tubes
- Suitable for the most common outside diameters from 6 to 42 mm and from 1/4 to 1 1/2 inch respectively · Working principle based on a specially shaped, two-part elastomer insert, which mechanically absorbs vibration in the pipe or tube and as a result reduces noises arising to a minimum
- · Elastomer insert is in particular distinguished by how little of its surface is in contact with the pipe or tube as well as with the clamp body
- Light tension of the elastomer insert in mounted condition provides the necessary clamping force
- Tongue-groove contour of the elastomer insert and the clamp body (which is reversed and thus diverges from standard DIN 3015 clamps with elastomer insert) enables the system to be used for the maximum range of outside diameters per clamp size, which contributes to flexibility, versatility and optimisation of the required installation space

Ordering Cod	es
--------------	----

C 0

Clamp Assembly *2*12-*PP-NRC	
ne assembly is consisting of one clamp body and one insert.	
STAUFF Group 2 Exact outside diameter Ø D1 (mm) 12 Material code (see below) PP-NRC	
IRC Clamp Body *2-*PP-NRC	
ne NRC clamp body is consisting of two clamp halves.	
STAUFF Group 2 Material code (see below) PP-NRC	
IRC Elastomer Insert *RI-NRC-*12-*2	
ne NRC elastomer insert is consisting of two insert halves.	
NRC Elastomer Insert RI-NRC	

* STAUFF Group

2

tandard Materials

Colour: Black Material code: PP-NRC

Elastomer Insert Thermoplastic Elastomer (73 Shore-A) Colour: Black

See pages 154 / 155 for material properties and technical information.

Alternative materials are available upon request. Please contact STAUFF for further information.

Special Materials

Please contact STAUFF for further details on fire-proof clamp body materials, tested and approved according to several international fire-protection standards (such as BS 6853, EN 45545-2, UL 94 and many more).

See pages 156 / 157 for material properties and technical information.

Clamp Body for Conduit Hoses and Cable Inserts Type CHC

Ordering Codes

Clamp Assembly

(consisting of two halves).

CHC Clamp Body *3*17-*PA-CHC

* STAUFF Group

* Nominal Size of the Conduit Hose

* Diameter Range Cable ØD (mm)

* Material code insert (see below)

* Nominal Size of the Conduit Hose

CHC Elastomer Insert

* CHC Elastomer insert

* STAUFF Group

* Diameter Range Cable ØD (mm)

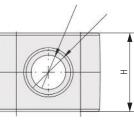
* Material code insert (see below)

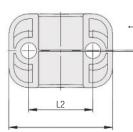
Polvamide Colour: Black Material code: PA-CHC

* Material code clamp body (see below)

*RI-CHC-*10/14*3*SA-V0

* Material code clamp body (see below)


* STAUFF Group


*3*17-*10/14-*PA-CHC*SA-VO

One assembly is consisting of one clamp body and one insert.

One CHC Clamp Body is consisting of two clamp halves.

One CHC Elastomer Insert is consisting of two insert halves.

R

FALIE

6	roup	Nominal	ØD (mm/in)	Ordering Codes (*	= Material)		Dime	ensior	IS					
H	-	Size	Cable	Clamp Assembly	Clamp Body	CHC-Insert	(^{mm} /in)							
CTAILEE	NID	Conduit Hose		(Clamp Body + Insert)	(2 Halves)	(2 Halves)	ØD1	ØD2	t	L1	L2	Н	Width	
		10	68		210-*		13	11	0,5	42	26	32	30	
2	2		.2431 8 10				.51 16	.43 13,5	.02 0,5	1.65 42	1.02	1.26 32	1.18 30	
		12	.3139		212-*		.63	.53	.02	1.65	1.02	1.26	1.18	
3	3	17	7 10 .2839	317-7/10- * - *	317- *	RI-CHC-7/10-3-*	21,5	18	0,7	50	33	35,5	30	
		17	10 14 .3955	317-10/14- * - *	317- *	RI-CHC-10/14-3-*	.85	.71	.03	1.97	1.30	1.40	1.18	
4	. 4	23	14 18 .5571	423-14/18- *-*	423- *	RI-CHC-14/18-4-*	29	24,5	0,7	59	40	41,5	30	
4	4	23	18 20 .7179		423- *		1.14	.96	.03	2.32	1.57	1.63	1.18	
		29	20 26,9		529-*		35	30,5	1,0	71	52	56,5	30	
5	5	2.5	.79 1.06		J29- 4		1.38	1.20	.04	2.80	2.05	2.22		
		36	26,933,7		536-*		43	38,5	1,0	71	52	56,5		
			1.06 1.33		• • •		1.69	1.52	.04	2.80	2.05	2.22		
6	6	48	33,7 42 1.33 1.65		648- *		55 2.17	49,5 1.95	1,0 .51	86 3.39	66 2.60	64,5 2.54		

Additional outside diameters are available upon request. Please contact STAUFF for further information.

Product Features

- . Design of the inside surface of the clamp body prevents corrugated conduit hoses from sliding
- · Elastomer Insert for the safe and damage-free installation of single cables as an option
- Chamfered edges avoid damaging of the conduit hoses
- · Available for all commonly used nominal sizes
- · Excellent weathering resistance, even under extreme conditions

Recommended Bolt Lengths (Socket Cap Screw IS)

for use without Cover Plate DP, assembly with Weld Plate SP, Hexagon Rail Nut SM and Channel Rail Adaptor CRA.

Group STAUFF	DIN	Metric ISO thread	Unified coarse (UNC) thread
2	2	M6 x 25	1/4–20 UNC x 1
3	3	M6 x 30	1/4-20 UNC x 1-1/8
4	4	M6 x 35	1/4-20 UNC x 1-3/8
5	5	M6 x 50	1/4-20 UNC x 2
6	6	M6 x 60	1/4-20 UNC x 2-1/2

See page 30 for further information on ordering.

18

Thermoplastic Elastomer (73 Shore-A) Colour: Black Material code: SA Elastomer Insert

Elastomer Insert

fire-proof clamp body material made of Thermoplastic Elastomer (86 Shore-A) Colour: White Material code: SA-VO

See pages 154 - 157 for material properties and technical information.

Alternative materials are available upon request. Please contact STAUFF for further information.

fire-proof clamp body material made of Polyamide Colour: Black Material code: PA-VO-CHC-BK

Materials

3

17

10/14

SA-VO

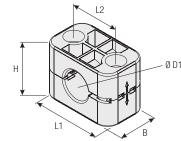
3

17

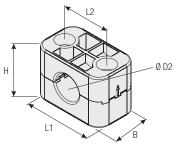
PA-CHC

RI-CHC

10/14


SA-VO

3


PA-CHC

For Use with Regular Hose

For Use with Compact Hose (Upper Clamp Half rotated by 180°)

Group 또		Outside I Regular H		Outside E Compact		Ordering Codes (2 Clamp Halves)			mensions (mm/in)				
STAUFF	DIN	Ø D1 (mm)	(in)	Ø D2 (mm)	(in)	(**-* = Material)	L1	L2	H Regular Hose	1 Compact Hose	В		
		19	.75	17,4	.69	319- **-* -CC-BK							
3	3	22,2	.87	20,6	.81	322.2- **-* -CC-BK	50 1.97	33 1.30	35,5 1.40	34 1.34	30 1.18		
		25,4	1.00	23,7	.93	325.4- **-* -CC-BK							

Additional outside diameters are available upon request. Please contact STAUFF for further information.

Product Features

- Only one clamp body required for two different hose diameters (compact hose + regular hose)
- Rotate upper clamp half by 180° and use clamp body to fasten compact hoses instead of regular hoses
- Available for three different combinations of outside hose diamaters
- Outer dimensions according to DIN 3015, Part 1
- Effective cost reduction due to lower inventories

Special Materials

Please contact STAUFF for further details on fire-proof clamp body materials, tested and approved according to several international fire-protection standards (such as BS 6853, EN 45545-2, UL 94 and many more).

See pages 156 / 157 for material properties and technical information.

Ordering Codes

 Clamp Body
 *3*19-*PP-H-CC-BK

 One clamp body is consisting of two clamp halves.
 *

 * STAUFF Group
 3

 * Outside diameter Ø D1 (mm) of regular hose
 19

 * Material code (see below)
 PP-H-CC-BK

Standard Materials

Polypropylene Colour: Black Material code: PP-H-CC-BK

See pages 154 / 155 for material properties and technical information.

Ordering Codes

One clamp body is consisting of two clamp halves.

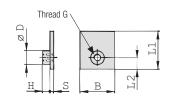
Clamp Body 540-40-PP-VK Rectangular design with a square of 40 mm x 40 mm / 1.57 in x 1.57 in

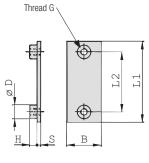
Clamp Body 540-36-PP-VK Rectangular design with a square of 40 mm x 36 mm / 1.57 in x 1.42 in

Please replace PP by PA to order a clamp body made of Polyamide instead of Polypropylene.

Product Features

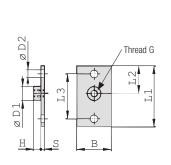
- Outer dimensions of clamp body according to Standard Series, STAUFF Group 5
- For proximity switches according to DIN EN 60947-5-2 or similar, rectangular construction, with a square of 40 mm x 40 mm / 1.57 in x 1.57 in or 40 mm x 36 mm / 1.57 in x 1.42 in
- For proximity switches according to DIN EN 60947-5-2 or similar, round construction, please use Standard Series clamp body, STAUFF Group 4, with the diameter required (e.g. 430-PP)
- Use with Hexagon Rail Nut SM and Mounting Rail TS to provide axial and horizontal position adjustment by loosening the bolts


Clamp Body = Rectangular Design Type VK

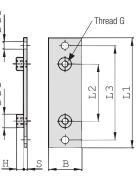

R STAUFF

Single Weld Plate Type SP

STAUFF Group 1


STAUFF Group 1A to 8

		Grou)	Dimensions ("	^{1m} /in)						Ordering Codes
Ordering C	odes	STAU	FF DIN	Thread G	L1	L2	В	S	Н	ØD	(Standard Options)
J	U U U U U U U U U U U U U U U U U U U		0	M6	31,5	10	30	3	6,5	12	SP-1-M-W2
Weld Plate	*SP-*1-*M-*W	2	0	1/4-20 UNC	1.24	0.39	1.18	.12	.26	.47	SP-1-U-W2
		1A	1	M6	36	20	30	3	6,5	12	SP-1A-M-W2
* Single Weld Plat	te	SP	1	1/4-20 UNC	1.42	0.79	1.18	.12	.26	.47	SP-1A-U-W2
		1 2	2	M6	42	26	30	3	6,5	12	SP-2-M-W2
* STAUFF Group	UFF Group 1		2	1/4-20 UNC	1.65	1.02	1.18	.12	.26	.47	SP-2-U-W2
* Thread code	Metric ISO thread	M 3	3	M6	50	33	30	3	6,5	12	SP-3-M-W2
	Unified coarse (UNC) thread	U	3	1/4-20 UNC	1.97	1.30	1.18	.12	.26	.47	SP-3-U-W2
	· ,		4	M6	60	40	30	3	6,5	12	SP-4-M-W2
* Material code	The second se	V2 4	4	1/4-20 UNC	2.36	1.57	1.18	.12	.26	.47	SP-4-U-W2
	Carbon Steel, zinc/nickel-plated	V3	-	M6	71	52	30	3	6,5	12	SP-5-M-W2
	Stainless Steel V2A	5	5	1/4-20 UNC	2.80	2.05	1.18	.12	.26	.47	SP-5-U-W2
	1.4301 / 1.4305 (AISI 304 / 303)	V4	0	M6	88	66	30	3	6,5	12	SP-6-M-W2
	Stainless Steel V4A	6	6	1/4-20 UNC	3.46	2.60	1.18	.12	.26	.47	SP-6-U-W2
	1.4401 / 1.4571 (AISI 316 / 316 Ti)	V5	7	M6	122	94	30	5	6,5	12	SP-7-M-W2
1.44017 1.4371 (Aloi 3107 3101)		7	/	1/4-20 UNC	4.80	3.70	1.18	.20	.26	.47	SP-7-U-W2
	Aluminium EN AW-6060	85 0	0	M6	148	120	30	5	6,5	12	SP-8-M-W2
	(Dimension S: 5 mm / .20 in)	8	8	1/4-20 UNC	5.83	4.72	1.18	.20	.26	.47	SP-8-U-W2


All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Elongated Weld Plate Type SPV

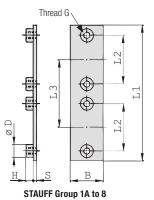
ØD2

ø D1

STAUFF Group 1A to 8

		Group		Dimensions (^{mm} / _{in})									Ordering Codes	
		STAUFF	DIN	Thread G	L1	L2	L3	В	S	Н	ØD1	ØD2	(Standard Options)	
		1	0	M6	58	24,5	44	30	3	6,5	12	6,5	SPV-1-M-W2	
*SPV-*1-*M-*W	12	1	0	1/4-20 UNC	2.28	.96	1.73	1.18	.12	.26	.47	.26	SPV-1-U-W2	
		1A	4	M6	64	20	50	30	3	6,5	12	6,5	SPV-1A-M-W2	
S	PV	IA	1	1/4-20 UNC	2.52	.79	1.97	1.18	.12	.26	.47	.26	SPV-1A-U-W2	
		2	2	M6	70	26	56	30	3	6,5	12	6,5	SPV-2-M-W2	
	1	2	2	1/4-20 UNC	2.76	1.02	2.20	1.18	.12	.26	.47	.26	SPV-2-U-W2	
SO thread	м	3	3	M6	78	33	64	30	3	6,5	12	6,5	SPV-3-M-W2	
coarse (UNC) thread	U	3	3	1/4-20 UNC	3.07	1.30	2.52	1.18	.12	.26	.47	.26	SPV-3-U-W2	
. ,		4	4	M6	87	40	73	30	3	6,5	12	6,5	SPV-4-M-W2	
· · · · · , p · · · · p · · · · · ·	W2	4	4	1/4-20 UNC	3.43	1.57	2.87	1.18	.12	.26	.47	.26	SPV-4-U-W2	
Steel, zinc/nickel-plated	W3	5	5	M6	100	52	86	30	3	6,5	12	6,5	SPV-5-M-W2	
s Steel V2A		5	5	1/4-20 UNC	3.94	2.05	3.39	1.18	.12	.26	.47	.26	SPV-5-U-W2	
/ 1.4305 (AISI 304 / 303)	W4	6	6	M6	115	66	100	30	3	6,5	12	6,5	SPV-6-M-W2	
s Steel V4A		0	0	1/4-20 UNC	4.53	2.60	3.94	1.18	.12	.26	.47	.26	SPV-6-U-W2	
/ 1.4571 (AISI 316 / 316 Ti)	W5	7	7	M6	150	94	136	30	5	6,5	12	6,5	SPV-7-M-W2	
		1	1	1/4-20 UNC	5.91	3.70	5.35	1.18	.20	.26	.47	.26	SPV-7-U-W2	
		8	8	M6	178	120	162	30	5	6,5	12	6,5	SPV-8-M-W2	
		0	0	1/4-20 UNC	7.01	4.72	6.38	1.18	.20	.26	.47	.26	SPV-8-U-W2	

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.


-0	0

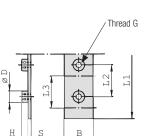
Ordering C	odes	
Weld Plate	*SPV-*1-*M-*\	N2
* Elongated Weld	Plate	SPV
* STAUFF Group		1
* Thread code	Metric ISO thread Unified coarse (UNC) thread	N L
* Material code	Carbon Steel, phosphated Carbon Steel, zinc/nickel-plated	W2 W3
	Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303)	W4
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	WS

Thread G \odot Ϋ́ Ч ð Ξ \odot 23,5 В Н S STAUFF Group 1

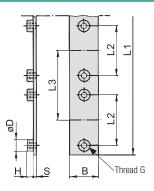
Twin Weld Plate
for 2 Clamp Bodies
Type DSP

A

Group		Dimensions (mm)	/in)							Ordering Codes
STAUFF	DIN	Thread G	L1	L2	L3	В	S	н	ØD	(Standard Options)
1	0	M6	87	40	40	30	3	6.5	12	DSP-1-40-M-W2
1	0	1/4-20 UNC	3.43	1.57	1.57	1.18	.12	.26	.47	DSP-1-40-U-W2
1A	1	M6	77	20	37	30	3	6.5	12	DSP-1A-37-M-W2
IA	1	1/4-20 UNC	3.03	.79	1.46	1.18	.12	.26	.47	DSP-1A-37-U-W2
2	2	M6	86	26	44	30	3	6.5	12	DSP-2-44-M-W2
2	2	1/4-20 UNC	3.39	1.02	1.73	1.18	.12	.26	.47	DSP-2-44-U-W2
3	3	M6	102	33	52	30	3	6.5	12	DSP-3-52-M-W2
3	3	1/4-20 UNC	4.02	1.30	2.05	1.18	.12	.26	.47	DSP-3-52-U-W2
4	4	M6	120	40	60	30	3	6.5	12	DSP-4-60-M-W2
4	4	1/4-20 UNC	4.72	1.57	2.36	1.18	.12	.26	.47	DSP-4-60-U-W2
5	5	M6	145	52	75	30	3	6.5	12	DSP-5-75-M-W2
5	5	1/4-20 UNC	5.71	2.05	2.95	1.18	.12	.26	.47	DSP-5-75-U-W2
6	6	M6	178	66	90	30	3	6.5	12	DSP-6-90-M-W2
0	U	1/4-20 UNC	7.01	2.60	3.54	1.18	.12	.26	.47	DSP-6-90-U-W2


All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

	_									
Ordering Codes										
Weld Plate	Weld Plate *DSP-*1-*40-*M-*W2									
* Twin Weld Plate	for 2 Clamp Bodies	DSP								
* STAUFF Group		1								
* Pipe center spa	cing L3 (mm)	40								
* Thread code	Metric ISO thread Unified coarse (UNC) thread	M U								
* Material code	Carbon Steel, phosphated Carbon Steel, zinc/nickel-plated	W2 W3								
	Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303)	W4								
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W5								


Group Weld Plate

Type RAP

for 5 or 10 Clamp Bodies

STAUFF Group 1

STAUFF Group 1A to 8

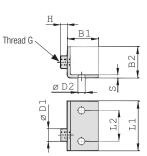
Group		Dimensions (^{mm} / _{in})							Ordering Codes	
STAUFF	DIN	Thread G	L1	L2	L3	В	S	Н	ØD	(Standard Options)
1	0	M6	314	31	31	30	4	6,5	12	RAP-1-31-10-M-W1
1	0	1/4-20 UNC	12.36	1.22	1.22	1.18	.16	.26	.47	RAP-1-31-10-U-W1
1A	1	M6	373	20	37	30	4	6,5	12	RAP-1A-37-10-M-W1
IA	1	1/4-20 UNC	14.69	.79	1.46	1.18	.16	.26	.47	RAP-1A-37-10-U-W1
2	2	M6	442	26	44	30	4	6,5	12	RAP-2-44-10-M-W1
2	2	1/4-20 UNC	17.40	1.02	1.73	1.18	.16	.26	.47	RAP-2-44-10-U-W1
3	3	M6	521	33	52	30	4	6,5	12	RAP-3-52-10-M-W1
3	3	1/4-20 UNC	20.51	1.30	2.05	1.18	.16	.26	.47	RAP-3-52-10-U-W1
4	4	M6	300	40	60	30	4	6,5	12	RAP-4-60-5-M-W1
4	4	1/4-20 UNC	11.81	1.57	2.36	1.18	.16	.26	.47	RAP-4-60-5-U-W1
5	5	M6	378	52	75	30	4	6,5	12	RAP-5-75-5-M-W1
5	5	1/4-20 UNC	14.88	2.05	2.95	1.18	.16	.26	.47	RAP-5-75-5-U-W1
6	6	M6	450	66	90	30	4	6,5	12	RAP-6-90-5-M-W1
6	U	1/4-20 UNC	17.72	2.60	3.54	1.18	.16	.26	.47	RAP-6-90-5-U-W1

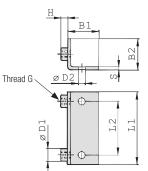
All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

UC

Carbon Steer, Zinc/nicker-plateu	wy J
Stainless Steel V2A	
1.4301 / 1.4305 (AISI 304 / 303)	W4
Stainless Steel V4A	W5
1 4401 / 1 4571 (AISI 316 / 316 Ti)	W J

Dimensional drawings: All dimensions in mm (in).


www.stauff.com/1/en/#21


21

Angled Weld Plate Type WSP

STAUFF Group 1

STAUFF Group 1A to 6

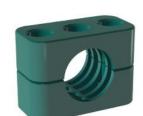
		Group	Group Dimensions (^{mm} / _{in})							Ordering Codes			
Ordering Codes	Ordering Codes		DIN	Thread G	L1	L2	B1	B2	S	Н	ØD1	ØD2	(Standard Options)
3		1	0	M6	30	14	30	30	3	6,5	12	6,5	WSP-1-M-W1
Weld Plate *WSP-*1-*I	N-*W1	1	0	1/4-20 UNC	1.18	.55	1.18	1.18	.12	.26	.47	.26	WSP-1-U-W1
		1A	1	M6	36	20	30	30	3	6,5	12	6,5	WSP-1A-M-W1
* Angled Weld Plate	WSP	IA	1	1/4-20 UNC	1.26	.79	1.18	1.18	.12	.26	.47	.26	WSP-1A-U-W1
0		2	2	M6	42	26	30	30	3	6,5	12	6,5	WSP-2-M-W1
* STAUFF Group	1	2	2	1/4-20 UNC	1.65	1.02	1.18	1.18	.12	.26	.47	.26	WSP-2-U-W1
* Thread code Metric ISO thread	м	3	3	M6	50	33	30	30	3	6,5	12	6,5	WSP-3-M-W1
Unified coarse (UNC) thread	U	3		1/4-20 UNC	1.97	1.30	1.18	1.18	.12	.26	.47	.26	WSP-3-U-W1
, , , , , , , , , , , , , , , , , , ,		4	4	M6	60	40	30	30	3	6,5	12	6,5	WSP-4-M-W1
* Material code Carbon Steel, zinc/nickel-plat	ed W3	4	4	1/4-20 UNC	2.36	1.57	1.18	1.18	.12	.26	.47	.26	WSP-4-U-W1
Stainless Steel V2A		5	5	M6	70	52	30	30	3	6,5	12	6,5	WSP-5-M-W1
1.4301 / 1.4305 (AISI 304 / 3	03) W4	4 5	5	1/4-20 UNC	2.76	2.05	1.18	1.18	.12	.26	.47	.26	WSP-5-U-W1
Stainless Steel V4A	·	6	6	M6	88	66	30	30	3	6,5	12	6,5	WSP-6-M-W1
1.4401 / 1.4571 (AISI 316 / 3	16 Ti) W5	0	6	1/4-20 UNC	3.46	2.60	1.18	1.18	.12	.26	.47	.26	WSP-6-U-W1

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Bridge Weld Plate Type BSP

1.4401 / 1.4571 (AISI 316 / 316 Ti) **W5**

4


		G	Group		Dimensions (m	^{im} /in)							Ordering Codes
Ordering C	odes	S	STAUFF	DIN	Thread G	L1	L2	В	S	H1	H2	ØD	(Standard Options)
J		1	A	4	M6	48	20	30	3	13	6,5	12	BSP-1A-M-W1
Weld Plate	*BSP-*1A-*M-*V	/1 "	A	1	1/4-20 UNC	1.89	.79	1.18	.12	.52	.26	.47	BSP-1A-U-W1
			,	2	M6	54	26	30	3	13	6,5	12	BSP-2-M-W1
* Bridge Weld Pla	te B	SP 2	-	2	1/4-20 UNC	2.13	1.02	1.18	.12	.52	.26	.47	BSP-2-U-W1
			,	3	M6	62	33	30	3	13	6,5	12	BSP-3-M-W1
* STAUFF Group 1A		1A ³	3	3	1/4-20 UNC	2.44	1.30	1.18	.12	.52	.26	.47	BSP-3-U-W1
* Thread code	Metric ISO thread	M 4		4	M6	71	40	30	3	13	6,5	12	BSP-4-M-W1
	Unified coarse (UNC) thread	U 4	•	4	1/4-20 UNC	2.80	1.57	1.18	.12	.52	.26	.47	BSP-4-U-W1
	()			5	M6	85	52	30	3	13	6,5	12	BSP-5-M-W1
* Material code	The second se	VZ	,	5	1/4-20 UNC	3.35	2.05	1.18	.12	.52	.26	.47	BSP-5-U-W1
	Carbon Steel, zinc/nickel-plated	N3		6	M6	98	66	30	3	13	6,5	12	BSP-6-M-W1
	Stainless Steel V2A	6	0	1/4-20 UNC	3.86	2.60	1.18	.12	.52	.26	.47	BSP-6-U-W1	
	1.4301 / 1.4305 (AISI 304 / 303) Stainless Steel V4A												
			l thread	ed parts	are available witl	h Metric I	S0 threa	d or unifi	ed coars	e (UNC)	thread ad	cording t	o dimension table.

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Clamp Body for Multi-Group Weld Plate Type MGR

Orde	ering Codes				
Clam	p Body	*5*20-*PF	P-MGR		
One cla	imp body is consisting	of two clamp halves	i.		
* STAUFF Group 5 * Exact outside diameter Ø D1 (mm) 20 * Material code (see below) PP-MGR					
Standa	rd Materials				
	Polypropylene Colour: Green Material code: PP-I	//GR			

Material code: PA-MGR

See pages 154 / 155 for properties and technical information.

Multi-Group Weld Plates (type RAP-MGR) are designed to be used in combination with Standard Series clamp bodies, STAUFF Group 2 (regular types, see pages 14 ff.) covering a diamater range from 8 mm / .31 in to 18 mm / .71 in, as well as Standard Series clamp bodies, STAUFF Group 5 (type MGR, see above) covering a diamater range from 20 mm / .79 in to 42 mm / 1.65 in. Thus, all Standard Series

R

Outside Diameter

(in)

1-1/4

1-1/2

Pipe / Tube

ØD

(mm)

21,3

20

22

23 25

26.9 28

30

32

33,7

35 38

40

42

Group

5

STAUFF DIN

5

L1

L2

STAUFF Group 5

Copper Tube

ASTM B88

(in)

3/4

1-1/4

Nominal Bore

Pipe

(in)

1/2

3/4

1-1/4

Additional outside diameters are available upon request. Please contact STAUFF for further information.

Ordering Codes

520-******-MGR

521.3-**-MGR

522-**-MGR

523-******-MGR

525-******-MGR

526.9-**-MGR

528-**-MGR

530-******-MGR

532-**-MGB

533.7-**-MGR

535-******-MGR

538-******-MGR

540-******-MGR

542-******-MGR

(2 Clamp

Halves) (** = Material) Dimensions

52 26 58 0,8

2.80 2.05 1.02 2.28 .03

S min. Width

30

1.18

(^{mm}/_{in})

L1 L2 L3 Н

71

L3

L3

TALIE

metal parts (bolts, cover plates) of these groups can be used. C D

Multi-Group Weld Plate RAP-MGR-25-312-M-W1

Number of	Dimensions ("	^{im} /in)	Ordering Codes					
Weld Nuts	Thread G	L3	L4	В	S	Н	ØD	(Standard Options)
6	M6	26	156	30	4	6,5	12	RAP-MGR-25-156-M-W1
0	1/4-20 UNC	1.02	6.14	1.18	.16	.26	.47	RAP-MGR-25-156-U-W1
9	M6	26	234	30	4	6,5	12	RAP-MGR-25-234-M-W1
9	1/4-20 UNC	1.02	9.21	1.18	.16	.26	.47	RAP-MGR-25-234-U-W1
12	M6	26	312	30	4	6,5	12	RAP-MGR-25-312-M-W1
12	1/4-20 UNC	1.02	12.28	1.18	.16	.26	.47	RAP-MGR-25-312-U-W1
15	M6	26	390	30	4	6,5	12	RAP-MGR-25-390-M-W1
15	1/4-20 UNC	1.02	15.35	1.18	.16	.26	.47	RAP-MGR-25-390-U-W1
20	M6	26	520	30	4	6,5	12	RAP-MGR-25-520-M-W1
20	1/4-20 UNC	1.02	20.47	1.18	.16	.26	.47	RAP-MGR-25-520-U-W1
07	M6	26	700	30	4	6,5	12	RAP-MGR-25-700-M-W1
27	1/4-20 UNC	1.02	27.55	1.18	.16	.26	.47	RAP-MGR-25-700-U-W1

Cover a diamater range from 8 mm (.31 in) to 42 mm (1.65 in) with only one Group Weld Plate!

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

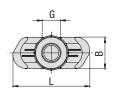
₿ ۲ \sim ۲ ۲ ۲ \mathbf{c} ۲ \mathcal{C} \odot В Thread G

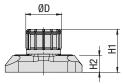
S

Multi-Group Weld Plate for Clamp Body Sizes 2 and 5 (Type MGR) **Type RAP-MGR**

Ordering Codes

Weld Plate	*RAP-MGR-*25-*156-*M	-*W1				
* Multi Group Weld	d Plate RAF	P-MGR				
* Suitable for STAUFF Group 2 and 5 (only type MGR)						
* Length L4 (mm)	156 (with 6 weld nuts) 234 (with 9 weld nuts) 312 (with 12 weld nuts) 390 (with 15 weld nuts) 520 (with 20 weld nuts) 700 (with 27 weld nuts)	156 234 312 390 520 700				
* Thread code	Metric ISO thread Unified coarse (UNC) thread	M U				
* Material code	Carbon Steel, uncoated	W1				
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 T	W5				




Hexagon Rail Nut

(for Use with Mounting Rail TS)

A

Ordering C	odes	Gro STA
Hexagon Rail	Nut *SM-*1-8/1D-*M-*W3	1
* Hexagon Rail Nu		1A
* STAUFF Group	1 to 8 (DIN Group 0 to 8) 1-8/1D	2
* Thread code	Metric ISO thread M Unified coarse (UNC) thread U	3
* Material code	Carbon Steel, zinc/nickel-plated W3	4
	Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303) W4	5
	Stainless Steel V4A W5	6
	1.4401 / 1.4571 (AISI 316 / 316 Ti)	7
		8

Group Dimensions (^{mm} / _{in})								Ordering Codes	
STAUFF	DIN	Thread G	L	В	H1	H2	ØD	(Standard Options)	
1	0								
1A	1								
2	2								
3	3								
4	4	M6 1/4-20 UNC	25,5 1.00	10,4 .41	14,2 .56	5,5 .22	12 .47	SM-1-8/1D-M-W3 SM-1-8/1D-U-W3	
5	5	1/4-20 000	/+=20 0NC 1.00 .41	.00					
6	6								
7	7								
8	8								

Hexagon Rail Nuts, type SM-1-8/1D are also suitable for Twin Series, STAUFF Group 1D.

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Mounting Rail

(for Use with Hexagon Rail Nut SM)
Type TS

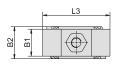
Mounting Rail TS-11

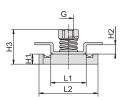
Mounting Rail TS-14

Mounting Rail TS-30

Ordering Codes								
Mounting Rai	il *TS-*11-*1M-*	W1						
* Mounting Rail		TS						
* Height of rail	11 mm / .43 in 14 mm / .55 in 30 mm / 1.18 in	11 14 30						
* Length of rail	1 m / 3.28ft 2 m / 6.56ft	1M 2M						
	Alternative lengths available upon rea Contact STAUFF for further informa							
* Material code	Carbon Steel, uncoated Carbon Steel, hot-dip galvanised	W1 W98						
	Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303)	W4						
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti) W5						

Group STAUFF	DIN	Dimensions (^m B1	^m /in) B2	S	Ordering Codes (Standard Options) Length of Rail: 1 m / 3.28ft Length of Rail: 2 m / 6.56ft				
1	0								
1A	1				Height 11 mm / .43 in TS-11-1M-W1	Height 11 mm / .43 in TS-11-2M-W1			
2	2								
3	3								
4	4	28 1.10	11 .43	2.08	Height 14 mm / .55 in TS-14-1M-W1	Height 14 mm / .55 in TS-14-2M-W1			
5	5								
6	6								
7	7				Height 30 mm / 1.18 in TS-30-1M-W1	Height 30 mm / 1.18 in TS-30-2M-W1			
8	8								


Mounting Rails, type TS-11/14/30 are suitable for all Standard Series and Twin Series group sizes. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.


Channel Rail Adaptor

(for Use with Various Channel Rails)

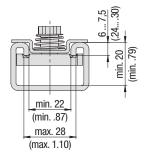
Type CRA

Α

Group		Dimensions (mm		Ordering Codes							
STAUFF	DIN	Thread G	L1	L2	L3	B1	B2	H1	H2	H3	(Standard Options)
1	0										
1A	1										
2	2										
3	3										
4	4	M6 1/4-20 UNC	21 .83	35 1.38	40 1.57	16 .63	19 .75	6 .24	5,5 .22	20,5 .81	CRA-1-8/1D-M-W3 CRA-1-8/1D-U-W3
5	5	1/4-20 DING			1.07						
6	6										
7	7										
8	8										

Ordering Codes							
Adaptor *CRA-*1-8/1D-*M-*W3							
* Channel Rail Ada	aptor	CRA					
* STAUFF Group	1 to 8 (DIN Group 0 to 8) 1	-8/1D					
* Thread code	Metric ISO thread Unified coarse (UNC) thread	M U					
* Material code	Carbon Steel, zinc/nickel-plated	W3					
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Tij	W5					

The Channel Rail Adaptor, type CRA 1-8/1D is also suitable for Twin Series, STAUFF Group 1D.

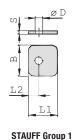

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Compatibility with Channel Rails

The STAUFF Channel Rail Adaptor, type CRA, is suitable for various channel rails, including the following types:

HALFEN	HILTI	UNISTRUT®	STAUFF (Cushion Clamp Series)
HM 41/41	MQ-21, MQ-41, MQ-52, MQ-72	P1000, P1000T, P1000V, P1000VT, P1001	SCS-048-1-PL, SCS-048-1-GR
HZA 41/22	MQ-21U, MQ-41U, MQ-72U	P2000, P2000T	SCS-120-1-PL, SCS-120-1-GR
HZM 41/41	MQ-21D, MQ-41D, MQ-52-72D	P3003, P3003T, P3300V, P3300VT, P3301	See page 149 for technical information.
HZM 41/22		P4000, P4000T	
HL 41/41, HL 41/B2		P5000, P5000T, P5001, P5500, P5500T, P5501	

To check the compatibility with additional types of channel rail, please compare the dimensions with the following drawing before use.


Basic dimensional requirements for channel rails to be used with STAUFF Channel Rail Adaptors, type CRA

Dimensional drawings: All dimensions in mm (in).

Cover Plate Type DP

L1 STAUFF Group 1A to 8 R

TALIE

		Group		Dimension	15 (^{mm} /in)				Ordering Codes
Ordering C	odes	DIN	L1	L2	В	S	ØD	(Standard Options)	
		1	0	28	9,5	30	3	7	DP-1-W3
Cover Plate	*DP-*1-*W3	· ·	0	1.10	.37	1.18	.12	.28	
		1A	1	34	20	30	3	7	DP-1A-W3
* Cover Plate	DP			1.34	.79	1.18	.12	.28	DI IA WO
		2	2	40,5	26	30	3	7	DP-2-W3
* STAUFF Group	1	<u> </u>	2	1.59	1.02	1.18	.12	.28	DI -2-W5
* Material code	Carbon Steel, zinc/nickel-plated W3	3	3	48	33	30	3	7	DP-3-W3
	· ·	5	5	1.89	1.30	1.18	.12	.28	DF-3-W3
	Stainless Steel V2A W4	4	4	57	40	30	3	7	DP-4-W3
	1.4301 / 1.4305 (AISI 304 / 303)	4	4	2.24	1.57	1.18	.12	.28	DF-4-W3
	Stainless Steel V4A W5	5	5	70	52	30	3	7	DP-5-W3
1	1.4401 / 1.4571 (AISI 316 / 316 Ti)	5	5	2.76	2.05	1.18	.12	.28	DP-0-W3
	Aluminium EN AW-6060 W85	6	6	86	66	30	3	7	DP-6-W3
		O	O	3.39	2.60	1.18	.12	.28	DE-0-M3
		7	7	118	94	30	5	7	
		1	1	4.65	3.70	1.18	.20	.28	DP-7-W3
		0	0	144	120	30	5	7	
		8	8	5.67	4.72	1.18	.20	.28	DP-8-W3

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Hexagon Head Bolt

(for Use with Cover Plate DP) **Type AS**

n			n
٦	Ē	ī	4
	-		Ц
_			G

Hexagon Head Bolt AS (according to DIN 931 / 933 or ANSI / ASME B18.2.1.) Dimensions applicable only when used with Cover Plate DP

	Group STAUFF	DIN	Dimensions (^{mm} / _m) Thread G x L	Ordering Codes (Standard Options)
	STAUFF	DIN	M6 x 30	AS-M6x30-W3
13	1	0	1/4–20 UNC x 1-1/4	AS-1/4-20UNCx1-1/4-W3
13			M6 x 30	AS-M6x30-W3
	1A	1	1/4–20 UNC x 1-1/4	AS-1/4-20UNCx1-1/4-W3
AS	-		M6 x 35	AS-M6x35-W3
AS	2	2	1/4–20 UNC x 1-3/8	AS-1/4-20UNCx1-3/8-W3
	•	0	M6 x 40	AS-M6x40-W3
30	3 3	3	1/4-20 UNC x 1-1/2	AS-1/4-20UNCx1-1/2-W3
N3	4	4	M6 x 45	AS-M6x45-W3
	4	4	1/4-20 UNC x 1-7/8	AS-1/4-20UNCx1-7/8-W3
N4	5	5	M6 x 60	AS-M6x60-W3
	5	5	1/4-20 UNC x 2-3/8	AS-1/4-20UNCx2-3/8-W3
N5	6	6	M6 x 70	AS-M6x70-W3
	U	0	1/4-20 UNC x 2-3/4	AS-1/4-20UNCx2-3/4-W3
	7	7	M6 x 100	AS-M6x100-W3
	'	1	1/4-20 UNC x 4	AS-1/4-20UNCx4-W3
	8	8	M6 x 125	AS-M6x125-W3
	8	0	1/4–20 UNC x 4-7/8	AS-1/4-20UNCx4-7/8-W3

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Ordering Codes						
Hexagon Hea	ad Bolt	*AS-*M6x30)-*W3			
* Type of bolt	(accordir	Head Bolt ng to DIN 931 / 933 'ASME B18.2.1.)	A			
* Thread type an	d size acc.	to dimension table	M6x3			

* Material code	Carbon Steel, zinc/nickel-plated	W3
	Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303)	W4
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W5

Safety Washer

(for Use with Hexagon Head Bolt AS) Type SI (DIN 93)

A

Safety Washer SI
(Bend longer tab down towards the side of the clamp body
and one side up towards one of the flats of the hexagon head bolt)

Group		Dimensions (^{mm} / _{in})						Ordering Codes
STAUFF	DIN	ØD1	В	ØD2	L	R	S	(Standard Options)
1 to 8	0 to 8	6,4	7	19	18	4	0,5	SI-6.4-DIN93-W3
1 10 0	0100	.25	.28	.75	.71	.16	.02	

Safety Washers, type SI are used as locking devices to prevent Hexagon Head Bolts, type AS from loosening. Safety Washers, type SI are suitable for all Standard Series group sizes.

m

Radius R

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

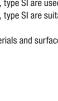
Ordering Codes						
r *SI-*6.4-*DIN93-*W3						
Safety washer with 1 tab (according to DIN 93) SI-6.4-DIN93						
Carbon Steel, zinc/nickel-plated W3						
Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti) W5						

Radius R

ഗ

Safety Washer SI (Bend longer tab down towards the side of the clamp body and shorter tab up towards one of the flats of the hexagon head bolt)

Group		Dimensions (^{mm} / _{in})						Ordering Codes	
STAUFF	DIN	ØD1	В	ØD2	L1	L2	R	S	(Standard Options)
1 to 8	0 to 8	6,4 .25	7 .28	12 .47	18 .71	9 .35	4.16	0,5 .02	SI-6.4-DIN463-W3


Safety Washers, type SI are used as locking devices to prevent Hexagon Head Bolts, type AS from loosening. Safety Washers, type SI are suitable for all Standard Series group sizes.

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Safety Washer (for Use with Hexagon Head Bolt AS) Type SI (DIN 463)

Ordering Codes							
Safety Washe	r *SI-*6.4-*DIN463-*W3						
* Type of washer	Safety washer with 2 tabs (according to DIN 463) SI-6.4-DIN463						
* Material code	Carbon Steel, zinc/nickel-plated W3						
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti) W5						

Slotted Head Screw Type LI

Socket Cap Screw IS (according to ISO 4762 or ANSI / ASME B18.3) Dimensions applicable only when used without Cover Plate DP Dimensions applicable only when used without Cover Plate DP

Slotted Head Screw LI

(according to ISO 1207 or ANSI / ASME B18.6.3)

Ordering Codes	0
Socket Cap Screw *IS-*M6x30-*W3	1
Slotted Head Screw *LI-*M6x30-*W3	1
* Type of bolt Socket Cap Screw (according to	2
ISO 4762 or ANSI / ASME B18.3) Slotted Head Screw (according to	3
ISO 1207 or ANSI / ASME B18.6.3) Please note: Socket cap screws IS and slotted head	4
screws LI have to be used in conjunction with washers US, which are available	5
separately.	6
* Thread type and size acc. to dimension table M6x30	7
* Material code Carbon Steel, zinc/nickel-plated W3	'
Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303) W4	8
Stainless Steel V4A W5 1.4401 / 1.4571 (AISI 316 / 316 Ti)	AI
	Al

Group		Dimensions (mm/in)	Dimensions (mm/in) Ordering Codes (Standard C		
STAUFF	DIN	Thread G x L	Socket Cap Screws	Slotted Head Screws	
1	0	M6 x 20	IS-M6x20-W3	LI-M6x20-W3	
1	0	1/4-20 UNC x 3/4	IS-1/4-20UNCx3/4-W3	LI-1/4-20UNCx3/4-W3	
1A	1	M6 x 20	IS-M6x20-W3	LI-M6x20-W3	
IA	1	1/4-20 UNC x 3/4	IS-1/4-20UNCx3/4-W3	LI-1/4-20UNCx3/4-W3	
2	2	M6 x 25	IS-M6x25-W3	LI-M6x25-W3	
2	2	1/4-20 UNC x 1	IS-1/4-20UNCx1-W3	LI-1/4-20UNCx1-W3	
3	3	M6 x 30	IS-M6x30-W3	LI-M6x30-W3	
5	5	1/4-20 UNC x 1-1/8	IS-1/4-20UNCx1-1/8-W3	LI-1/4-20UNCx1-1/8-W3	
4	4	M6 x 35	IS-M6x35-W3	LI-M6x35-W3	
4	4	1/4-20 UNC x 1-3/8	IS-1/4-20UNCx1-3/8-W3	LI-1/4-20UNCx1-3/8-W3	
5	5	M6 x 50	IS-M6x50-W3	LI-M6x50-W3	
5	5	1/4-20 UNC x 2	IS-1/4-20UNCx2-W3	LI-1/4-20UNCx2-W3	
6	6	M6 x 60	IS-M6x60-W3	LI-M6x60-W3	
0	6	1/4-20 UNC x 2-1/2	IS-1/4-20UNCx2-1/2-W3	LI-1/4-20UNCx2-1/2-W3	
7	7	M6 x 90	IS-M6x90-W3	ON REQUEST ONLY	
1	1	1/4-20 UNC x 3-3/8	IS-1/4-20UNCx3-3/8-W3		
8	8	M6 x 110	IS-M6x110-W3	ON REQUEST ONLY	
0	0	1/4-20 UNC x 4-3/8	IS-1/4-20UNCx4-3/8-W3	UN REQUEST UNLY	

Il threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Hexagon Head Bolt Type AS

Ordering Codes

Hexagon Head Bolt

Hexagon Head Bolt (according to DIN 931 / 933

Stainless Steel V2A

 \star Thread type and size acc. to dimension table

or ANSI / ASME B18.2.1.)

Carbon Steel, zinc/nickel-plated

1.4301 / 1.4305 (AISI 304 / 303) Stainless Steel V4A

1.4401 / 1.4571 (AISI 316 / 316 Ti)

* Type of bolt

* Material code

Insert Type ES / EP

*AS-*M6x27-*W3

AS

W3

W4

W5

M6x27

Hexagon Head Bolt AS (according to DIN 931 / 933 or ANSI / ASME B18.2.1.) Dimensions applicable only when used with Inserts EP / ES

Group STAUFF DIN		Dimensions (mm/in)	Ordering Codes
		Thread G x L	(Standard Options)
1	0	M6 x 27	AS-M6x27-W3
1	0	1/4-20 UNC x 1-1/8	AS-1/4-20UNCx1-1/8-W3
1A	1	M6 x 27	AS-M6x27-W3
IA	'	1/4-20 UNC x 1-1/8	AS-1/4-20UNCx1-1/8-W3
2	2	M6 x 32	AS-M6x32-W3
2	2	1/4-20 UNC x 1-3/8	AS-1/4-20UNCx1-3/8-W3
3	3	M6 x 35	AS-M6x35-W3
3		1/4-20 UNC x 1-3/8	AS-1/4-20UNCx1-3/8-W3
4	4	M6 x 42	AS-M6x42-W3
4		1/4-20 UNC x 1-5/8	AS-1/4-20UNCx1-5/8-W3
5	5	M6 x 57	AS-M6x57-W3
5		1/4-20 UNC x 2-3/8	AS-1/4-20UNC-2-3/8-W3
6	6	M6 x 65	AS-M6x65-W3
0	0	1/4-20 UNC x 2-3/4	AS-1/4-20UNCx2-3/4-W3
7	7	M6 x 95	AS-M6x95-W3
/	/	1/4-20 UNC x 4	AS-1/4-20UNCx4-W3
8	8	M6 x 118	AS-M6x118-W3
0	8	1/4-20 UNC x 4-3/4	AS-1/4-20UNCx4-3/4-W3

Insert EP (Polypropylene) Insert ES-W3 (Steel, zinc/nickel-plated) Insert ES-W5 (Stainless Steel V4A)

Group	Group		Dimensions (mm/in)				g Codes
STAUFF DIN		D1	D2	H ES	H EP	(Standar	d Options)
1 to 8	0 to 8	,	6,5		8,6	ES-W3	EP
		.46	.26	.31	.34		

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

28

Group

1

1A

2

3

4

5

6

7

8

STAUFF DIN

0

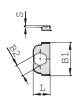
1

2

3

4

5


6

7

8

Safety Locking Plate

(for Use with Stacking Bolt AF) **Type SIG**

Dimensio

L 16

.63 33

1.30 39

1.54 47

1.85 56

2.20

69

2.72

3.35

117

4.61

143

5.63

85

1.10

28

28

28

1.10

1.10

1.10

28

1.10

STAUFF Group 1A to 8

SIG-4-W3

SIG-5-W3

SIG-6-W3

SIG-7-W3

SIG-8-W3

ons (^{mm} /in)			Ordering Codes	
	B1	B2	S	(Standard Options)
	32	11,2	1	SIG-1-W3
	1.26	.44	.04	310-1-W3
	28	11,2	1	SIG-1A-W3
	1.10	.44	.04	510-1A-W5
	28	11,2	1	SIG-2-W3
	1.10	.44	.04	310-2-103
	28	11,2	1	SIG-3-W3
	1.10	.44	.04	310-3-W3
	28	11,2	1	SIG-4-W3

.04

.04

.04

.04

.04

1

1

1

1

Ordering Codes							
Safety Locking Plate *SIG-*1-*							
* Safety Locking I	Plate	SIG					
STAUFF Group		1					
Material code	Carbon Steel, zinc/nickel-plated	W3					
	Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303) Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W4 W5					

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Thread G

.44

11,2

.44

11,2

.44 11,2

.44

11,2

.44

Stacking Bolt

(for Use with Safety Locking Plate SIG) **Type AF**

Group		Dimensions (^{mm} / _{in})					Ordering Codes
STAUFF	DIN	Thread G	L1	L2	L3 min.	Hex	(Standard Options)
1	0	M6	34	20	12	11	AF-1/1A/1D-M-W3
I	0	1/4-20 UNC	1.34	.79	.47	.43	AF-1/1A/1D-U-W3
1A	1	M6	34	20	12	11	AF-1/1A/1D-M-W3
IA	1	1/4-20 UNC	1.34	.79	.47	.43	AF-1/1A/1D-U-W3
2	2	M6	40	25	12	11	AF-2-M-W3
2	2	1/4-20 UNC	1.57	.98	.47	.43	AF-2-U-W3
3	3	M6	44	30	12	11	AF-3-M-W3
5		1/4-20 UNC	1.73	1.18	.47	.43	AF-3-U-W3
4	4	M6	49	35	12	11	AF-4-M-W3
4	4	1/4-20 UNC	1.93	1.38	.47	.43	AF-4-U-W3
5	5	M6	64	50	12	11	AF-5-M-W3
5	5	1/4-20 UNC	2.52	1.97	.47	.43	AF-5-U-W3
6	6	M6	74	60	12	11	AF-6-M-W3
0	U	1/4-20 UNC	2.91	2.36	.47	.43	AF-6-U-W3
7	7	M6	99	85	12	11	AF-7-M-W3
'	/	1/4-20 UNC	3.90	3.35	.47	.43	AF-7-U-W3
0	8	M6	124	110	12	11	AF-8-M-W3
8	0	1/4-20 UNC	4.88	4.33	.47	.43	AF-8-U-W3

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Ordering Codes Stacking Bolt *AF-*1/1A/1D-*M-*W3 * Type of bolt Stacking Bolt (according to STAUFF Standard) AF * STAUFF Group 1 * Thread code Metric ISO thread Μ Unified coarse (UNC) thread U * Material code Carbon Steel, zinc/nickel-plated W3 Stainless Steel V2A W4 1.4301 / 1.4305 (AISI 304 / 303) Stainless Steel V4A W5 1.4401 / 1.4571 (AISI 316 / 316 Ti)

Α

R STAUFF

① Type of Installation

A

Please select the type of installation (e.g. Weld Plates, Rail Nuts etc.) and add the corresponding Code to position (1) of the order code for your clamp assembly.

Installation on Weld Plate

-	Single Weld Plate Code: SP
No.	Elongated Weld Plate Code: SPV
Contraction of the local division of the loc	Twin Weld Plate (for STAUFF Group 1 to 6 only) Code: DSP
10 0.00	Group Weld Plate (for STAUFF Group 1 to 6 only) Code: RAP
-	Angled Weld Plate (for STAUFF Group 1 to 6 only) Code: WSP
Va-a	Bridge Weld Plate (for STAUFF Group 1A to 6 only) Code: BSP
Instal	lation on Mounting / Channel Rail
<u>.</u>	Hexagon Rail Nut Code: SM
સુરોક	Channel Rail Adaptor Code: CRA

2 Group Size & Diameter

Please select the required group size and diameter and add the corresponding Code to position (2) of the order code for your clamp assembly.

Group STAUFF	Outside Diameter P / T / H	Availabi Body Ma Profiled			
(DIN)	(mm)	Design	Туре Н	Type RI	Code
()	6	•	•	0	106
	6,4	•	•	0	106.4
1	8	•	•	0	108
(0)	9,5	•	•	0	109.5
	10	•	•	0	110
	12	•	•	0	112
	6	•	•	0	106A
	6,4	•	•	0	106.4A
1A	8	•	•	0	108A
(1)	9,5	•	•	0	109.5A
	10	•	•	0	110A
	12	•	•	0	112A
	12,7	•	•	0	212.7
	13,5	•	•	0	213.5
•	14	•	•	0	214
2 (2)	15	•	•	0	215
(4)	16	•	•	0	216
	17,2	•	•	0	217.2
	18	•	•	0	218
	19	•	•	0	319
	20	•	•	0	320
3	21,3	•	•	0	321.3
(3)	22	•	•	0	322
	25	•	•	0	325
	25,4	•	•	0	325.4
	6	0	0	•	406
	8	0	0	•	408
	10	0	0	•	410
	12	0	0	•	412
	12,7	0	0	•	412.7
	14	0	0	•	414
	15	0	0	•	415
4	16	0	0	•	416
(4)	17,2	0	0	•	417.2
	18	0	0	•	418
	19	0	0	•	419
	26,9	•	•	0	426.9
	28	•	•	0	428
	28,6	•	0	0	428.6
	30	٠	•	0	430
	32	٠	•	0	432

Group	Outside Diameter	Availability of Clamp Body Materials & Designs			
STAUFF	P/T/H	Profiled			
(DIN)	(mm)	Design	Туре Н	Type RI	Code
	32	•	•	0	532
	33,7	•	•	0	533.7
5	35	•	•	0	535
5 (5)	38	•	•	0	538
(0)	40	٠	٠	0	540
	41,3	•	0	0	541.3
	42	٠	•	0	542
	20	0	0	•	620
	21,3	0	0	•	621.3
	22	0	0	•	622
	25	0	0	•	625
	26,9	0	0	•	626.9
6	28	0	0	•	628
(6)	30	0	0	•	630
	32	0	0	•	632
	44,5	•	•	0	644.5
	48,3	•	•	0	648.3
	50,8	•	•	0	650.8
	54	•	•	0	654
	57,2	•	•	0	757.2
	60,3	•	•	0	760.3
7	63,5	•	•	0	763.5
(7)	70	•	٠	0	770
	73	٠	٠	0	773
	76,1	•	•	0	776.1
8	88,9	•	•	0	888.9
(8)	102	•	•	0	8102L

Standard Option

A

Please see pages 32 and 33 with detailed order examples for some of the most popular Standard Series clamp assemblies.

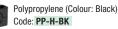
3 Clamp Body Design & Material

Please select the design and material of your clamp body and add the corresponding Code to position (3) of the order code for your clamp assembly.

Please check the availability of the selected clamp body design and material according to the matrix table in (2).

Profiled Design

Polypropylene (Colour: Black) Code: **PP-BK**


Code: PA

Aluminium Code: **AL** (for STAUFF Group 1A to 6 only)

Type H (Smooth)

Polypropylene Code: PP-H

Thermoplastic Elastomer (87 Shore-A) Code: **SA-H**

Type RI (with Elastomer Insert)

Polyamide

Code: **PA-R** (for STAUFF Group 4 and 6 only)

See pages 154 / 155 for material properties and technical information.

Please contact STAUFF for further details on fire-proof clamp body materials, tested and approved according to several international fire-protection standards.

(4) Mounting & Fitting Combination

Please select the mounting and fitting combination (e.g. bolts, screws, cover plates etc.) and add the corresponding Code to position ④ of the order code for your clamp assembly.

Installation with Cover Plate and Bolts

Cover Plate DP with Hexagon Head Bolts AS Code: **DP-AS**

Cover Plate DP with Socket Cap Screws IS* Code: DP-IS

Installation with Locking Plate and Bolts

Safety Locking Plate SIG with Stacking Bolts AF Code: **SIG-AF**

Installation with Inserts and Bolts

Inserts EP (Plastic) with Hexagon Head Bolts AS Code: **EP-AS**

Inserts ES (Steel) with Hexagon Head Bolts AS Code: **ES-AS**

Installation with Bolts only

Socket Cap Screws IS (Washers US included) Code: **IS**

Slotted Head Screws LI (Washers US included) Code: LI (for STAUFF Group 1 to 6 only)

* Special lengths of Socket Cap Screws IS required. For exact lenghts, please see details of Hexagon Head Bolt, type AS

(5) Thread Type

Please select the required thread type and add the corresponding Code to position (5) of the order code for your clamp assembly.

Metric ISO thread Code: M

Unified coarse (UNC) thread Code: **U**

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table.

6 Material & Surface Finishing

Please select the required material & surface finishing of the metal parts and add the corresponding Code to position (o) of the order code for your clamp assembly.

Metal parts made of Carbon Steel, zinc/nickel-plated	W3

Metal parts made of Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303)	W4
Metal parts made of Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W5

Weld Plate made of Carbon Steel, phosphated; Other metal parts made of Carbon Steel. zinc/nickel-plated

Individual combinations of alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

⑦ Assembling & Kitting

If required, please select an additional assembling and kitting option and add the corresponding Code to the last position of the order code for your clamp assembly.

Components supplied separately Code: none (standard option)

Components assembled Code: **A** (special option)

 $\begin{array}{c} \textbf{Components packed in kits} \\ \textbf{Code: } \textbf{K} \text{ (special option)} \end{array}$

2x Slotted Head Screw

1x Clamp Body (two halves) STAUFF Group 2 (DIN 2)

0.D. 12.7 mm / .50 in

Material: Polypropylene

Profiled inside surface

with tension clearance

with Washer

Surface: W3 Thread: Metric

- 1x Cover Plate Surface: W3 1x Clamp Body (two halves) STAUFF Group 2 (DIN 2) 0.D. 12,7 mm / .50 in Material: Polypropylene

Profiled inside surface

with tension clearance

2x Hexagon Head Bolt

Thread: Metric

Surface: W3

Order Code

SP-212.7-PP-DP-AS-M-W10

W10 is the standard option for this type of installation.

2x Hexagon Head Bolt Surface: W3 Thread: Metric

1x Cover Plate Surface: W3

- 1x **Clamp Body** (two halves) STAUFF Group 2 (DIN 2) 0.D. 12,7 mm / .50 in Material: Polypropylene Profiled inside surface with tension clearance
- 1x Elongated Weld Plate Surface: W2 Thread: Metric

Order Code

SPV-212.7-PP-DP-AS-M-W10

W10 is the standard option for this type of installation.

- 2x Hexagon Head Bolt Surface: W3 Thread: Metric 1x Cover Plate Surface: W3
- 1x **Clamp Body** (two halves) STAUFF Group 2 (DIN 2) 0.D. 12,7 mm / .50 in Material: Polypropylene Profiled inside surface

with tension clearance

2x **Hexagon Rail Nut** Surface: W3 Thread: Metric

Order Code (Mounting Rail TS not included.)

SM-212.7-PP-DP-AS-M-W3

 $\ensuremath{\textbf{W3}}$ is the standard option for this type of installation.

- 2x Socket Cap Screw with Washer Surface: W3 Thread: Metric
- 1x **Clamp Body** (two halves) STAUFF Group 2 (DIN 2) 0.D. 12,7 mm / .50 in Material: Polypropylene Profiled inside surface with tension clearance
- 1x Single Weld Plate Surface: W2 Thread: Metric

Order Code

SP-212.7-PP-IS-M-W10

W10 is the standard option for this type of installation.

- 2x Socket Cap Screw with Washer Surface: W3 Thread: Metric
- 1x **Clamp Body** (two halves) STAUFF Group 2 (DIN 2) 0.D. 12,7 mm / .50 in Material: Polypropylene Profiled inside surface with tension clearance
- 1x Elongated Weld Plate Surface: W2 Thread: Metric

Order Code SPV-212.7-PP-IS-M-W10

W10 is the standard option for this type of installation.

Order Code (Mounting Rail TS not included.)

SM-212.7-PP-IS-M-W3

W3 is the standard option for this type of installation.

1x Single Weld Plate Surface: W2 Thread: Metric

Order Code SP-212.7-PP-LI-M-W10

W10 is the standard option for this type of installation. Available up to STAUFF Group 6 (DIN Group 6) only.

- 2x Slotted Head Screw with Washer Surface: W3 Thread: Metric
- 1x **Clamp Body** (two halves) STAUFF Group 2 (DIN 2) 0.D. 12,7 mm / .50 in Material: Polypropylene Profiled inside surface with tension clearance
- 1x Elongated Weld Plate Surface: W2 Thread: Metric

Order Code

SPV-212.7-PP-LI-M-W10

W10 is the standard option for this type of installation. Available up to STAUFF Group 6 (DIN Group 6) only.

- 2x Slotted Head Screw with Washer Surface: W3 Thread: Metric
- 1x **Clamp Body** (two halves) STAUFF Group 2 (DIN 2) 0.D. 12,7 mm / .50 in Material: Polypropylene Profiled inside surface with tension clearance
- 2x Hexagon Rail Nut Surface: W3 Thread: Metric

Order Code (Mounting Rail TS not included.)

SM-212.7-PP-LI-M-W3

W3 is the standard option for this type of installation. Available up to STAUFF Group 6 (DIN Group 6) only.

Standard Series according to DIN 3015, Part 1

2x Hexagon Head Bolt Surface: W3 Thread: Metric

1x Cover Plate Surface: W3

1x Clamp Body (two halves) STAUFF Group 2 (DIN 2) 0.D. 12,7 mm / .50 in Material: Polypropylene Profiled inside surface with tension clearance

Order Code

212.7-PP-IS-M-W3

2x Socket Cap Screw with Washer Surface: W3 Thread: Metric

1x Clamp Body (two halves) STAUFF Group 2 (DIN 2) 0.D. 12,7 mm / .50 in Material: Polypropylene Profiled inside surface with tension clearance

2x Slotted Head Screw with Washer Surface: W3 Thread: Metric

1x Clamp Body (two halves) STAUFF Group 2 (DIN 2) Tube-0.D. 12,7 mm / .50 in Material: Polypropylene Profiled inside surface with tension clearance

Order Code

212.7-PP-DP-AS-M-W3

W3 is the standard option for this type of installation.

2x **Stacking Bolt** Surface: W3 Thread: Metric

1x Safety Locking Plate Surface: W3

1x **Clamp Body** (two halves) STAUFF Group 2 (DIN 2) 0.D. 12,7 mm / .50 in Material: Polypropylene Profiled inside surface with tension clearance

W3 is the standard option for this type of installation.

- 1x Socket Cap Screw with Washer Surface: W3 Thread: Metric 1x Clamp Body (two halves)
- STAUFF Group 1 (DIN 0) O.D. 6 mm / .24 in Material: Polypropylene Profiled inside surface with tension clearance Thread: Metric

1x Single Weld Plate Surface: W2 Thread: Metric

Order Code 212.7-PP-SIG-AF-M-W3

W3 is the standard option for this type of installation.

2x Hexagon Head Bolt Surface: W3 Thread: Metric

2x Insert Material: Plastic

- 1x **Clamp Body** (two halves) STAUFF Group 2 (DIN 2) 0.D. 12,7 mm / .50 in Material: Polypropylene Profiled inside surface with tension clearance
- 1x Single Weld Plate Surface: W2 Thread: Metric

Order Code SP-212.7-PP-EP-AS-M-W10

 $\boldsymbol{W10}$ is the standard option for this type of installation.

Order Code* SP-106-PP-IS-M-W10

W10 is the standard option for this type of installation.

- 2x Hexagon Head Bolt Surface: W3 Thread: Metric
- 2x Insert Material: Plastic
- 1x **Clamp Body** (two halves) STAUFF Group 2 (DIN 2) 0.D. 12,7 mm / .50 in Material: Polypropylene Profiled inside surface with tension clearance
- 1x Elongated Weld Plate Surface: W2 Thread: Metric

Order Code SPV-212.7-PP-EP-AS-M-W10

W10 is the standard option for this type of installation.

Order Code

212.7-PP-LI-M-W3

W3 is the standard option for this type of installation.

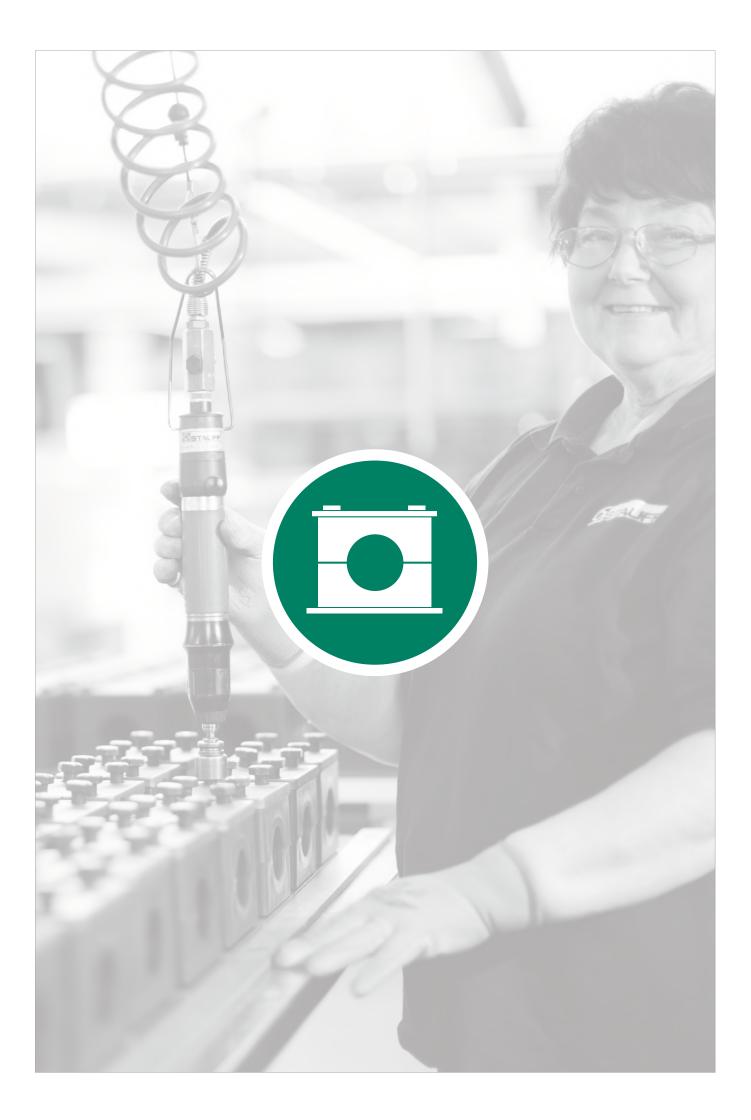
Thread codes

All threaded parts are available with Metric ISO thread or	
unified coarse (UNC) thread according to dimension table.	
Metric ISO thread	М

	IVI
nified coarse (UNC) thread	U

Material codes

Ur


The below listed material codes describe the materials and surface finishings of metal parts that are most relevant for Standard Series clamp assemblies. Individual combinations of alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Metal parts made of Carbon Steel, zinc/nickel-plated	W3
Metal parts made of Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303)	W4
Metal parts made of Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W5
Wald Distance of Carbon Otaci, absorbated, Other	

Weld Plate made of Carbon Steel, phosphated; Other metal parts made of Carbon Steel, zinc/nickel-plated W10

Technical Notes

* Because of their design, STAUFF Group 1 (DIN Group 0) clamp assemblies only include one single bolt / screw.

® K STAUFF

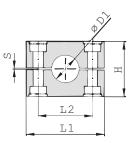
-	A R A
1	000
	-

Clamp Body Profiled Inside Surface with Tension Clearance
Clamp Body Smooth Inside Surface without Tension Clearance
Clamp Body with Elastomer Insert

36

38

39


-	Weld Plate for Single Clamps SPAL	40
	Weld Plate for Double Clamps	40
-	Elongated Weld Plate for Single Clamps	41
1996	Elongated Weld Plate for Double Clamps	41
8	Mounting Rail Nut GMV	42
	Mounting Rail STSV	42
AND NO THE	Channel Rail Adaptor	43
0 0	Cover Plate for Single Clamps	44
	Cover Plate for Double Clamps	44
1	Hexagon Head Bolt AS	45
٩	Socket Cap Screw	45
	Safety Washer (DIN 93) Si	46
	Safety Washer (DIN 463) Si	46
	Safety Locking Plate	47
١	Stacking Bolt AF	47
	Clamp Assemblies	48

R STAUFF

Clamp Body - Profiled Design

Profiled Inside Surface with Tension Clearance

Ordering Codes	Group 壯		Outside Pipe / T	e Diameter Tube	Nomin	al Bore Copper Tube	Ordering Codes (2 Clamp	Codes Dimensions (^{mm} /in)					
· · · · · · · · · · · · · · · · · · ·	STAUFF	DIN	Ø D1		Pipe	ASTM B88	Halves)	L1	L1				
Clamp Body *3*006-*PP	s.	ā	(mm)	(in)	(in)	(in)	(** = Material)	PP/PA/SA	AL	L2	H	S min.	Width
			6				3006-**						
One clamp body is consisting of two clamp halves.		6,4 1/4 3006.4-**											
			8	5/16			3008-**						
* 1 st part of STAUFF Group 3			9,5	3/8	1.10	1/4	3009.5-**						
* Exact outside diameter Ø D1 (mm) 006			10		1/8		3010-**	-					
* Material code (see below) PP			12	1.0		0.10	3012-**		50				00.5
	3S	1	12,7	1/2	1/4	3/8	3012.7-**	55 2.16	56 2.20	33 1.30	32	0,6	30,5
			13,5		1/4		3013.5-**	2.10	2.20	1.30	1.20	.02	1.20
tandard Materials			14 15				3014-**						
			15	E /0		1/0	3015- **						
Polypropylene Polypropylene				5/8	3/8	1/2	3016- **						
Colour: Green			17,2 18		3/0		3017.2- **						
Material code: PP			-				3018- **						
			20 19	3/4			3020- ** 4019- **						
Polypropylene			20	3/4			4019-**						
Colour: Black			20		1/2		4020-**						
Material code: PP-BK			21,3	7/8	1/2	3/4		022-**					
	4S	2	22	1/0		3/4	4022-**	70	70	45	48	0,6	30,5
Polyamide	43	2	25,4	1			4025.4-**	2.76	2.76	1.77	1.89	.02	1.20
Colour: Black Material code: PA			26,9	1	3/4		4025.4-**						
			20,9		3/4		4028-**						
			30				4030-**						
Thermoplastic Elastomer (87 Shore-A)			30				5030- * *						
Colour: Black			32	1-1/4			5032-**						
Material code: SA			33,7	1 1/4	1		5033.7- * *						
			35			1-1/4	5035-**	85	85	60	60	0,6	30.5
Aluminium	5S	3	38	1-1/2		, .	5038-**	3.35	3.35	2.36	2.36	.02	1.20
Colour: Self-Colour			40	1 1/2			5040- * *	0.00	0.00	2.00	2.00	.02	1.20
Material code: AL			41,3			1-1/2	5041.3-**						
as pages 154 (155 for motorial properties and technical			42		1-1/4		5042-**						
ee pages 154 / 155 for material properties and technical formation.			38	1-1/2			6038-**						
omaion.			42	=	1-1/4		6042-**						
pecial Materials			44,5	1-3/4			6044.5-**						
			48,3		1-1/2		6048.3-**						
ease contact STAUFF for further details on fire-proof			50,8	2			6050.8-**						
amp body materials, tested and approved according			54			2	6054- **						
several international fire-protection standards	6S	4	55				6055-**	115	120	90	89	2	45
uch as BS 6853, EN 45545-2, UL 94 and many more).			57				6057- * *	4.53	4.72	3.54	3.50	.08	1.77
aon ao 20 0000, EN 40040-2, UE 34 anu many more).			57,2	2-1/4			6057.2- * *						
ee pages 156 / 157 for material properties			60,3		2		6060.3-**						
nd technical information.			63,5	2-1/2			6063.5-**	*					
			65				6065-**						
Product Features			70	2-3/4			6070-**						

See page 37 for STAUFF Group 7S to 12S (DIN Group 5 to 10).

• Available for all commonly used pipe and tube outside diameters Additional outside diameters are available upon request. Please contact STAUFF for further information.

Proven, tested and trusted product in various markets

Recommended for the safe installation of rigid pipes and tubes

 Environmental protection due to vibration/noise reducing design - Excellent weathering resistance, even under extreme conditions

Group

NIC

5

6

7

8

9

10

STAUFF

7S

8S

9S

10S

11S

12S

Outside Diameter Nominal

(in)

2-3/4

3

Bore

Pipe (in)

2-1/2 (ANSI B 36-10)

2-1/2 (DIN EN 10220)

Pipe / Tube

Ø D1

(mm) 60.3

65

70

73

75

80

76,1

273

324

356

406

Clamp Body - Profiled Design

Profiled Inside Surface with Tension Clearance

•	L2 L1							
	Ordering Codes (2 Clamp	Dimens	sions (^{mm}	/in)				Ordering Codes
	Halves)	L1	L1					
	(** = Material)	PP/PA	AL	L2	Н	S min.	Width	Clamp Body
	7060.3- **							,
	7065- **							One clamp body is consisti
	7070- **							
	7073- **	154	152	122	120	2	60	* 1 st part of STAUFF Group
	7075- **	6.06	5.98	4.80	4.72	.08	2.36	* Exact outside diameter Ø
)	7076.1- **	0.00	0.00	4.00	7.72	.00	2.00	* Material code (see below
	7080- **							
	7082.5- **							
	7000 0							OL

82,5			7082.5- **						
88,9	3-1/2	3	7088.9- **						
88,9	3-1/2	3	8088.9-**						
100			8100- **						
102	4	3-1/2	8102- **	000	000	100	100	0	00
108			8108-**						80 3.15
114	4-1/2	4	8114- **	0.11	0.19	0.01	0.01	.00	3.10
127	5		8127-**						
133			8133-**						
127	5		9127- **						
133			9133- **						
140		5	9140- **	051	055	205	200	2	91
152	6		9152- **					*	3.58
159			9159- **	9.00	10.04	0.07	1.01	.12	5.50
165			9165- **						
168		6	9168- **						
168		6	10168-**						
177,8			10177.8-**						
193,7			10193.7-**	336	326	265	270	3	120
203	8		10203- **	13.22	12.83	10.43	10.63	.12	4.72
216			10216-**						
219		8	10219-**						
219		8	11219-**	470	470	205	410	0	100
	88,9 88,9 100 102 108 114 127 133 127 133 140 152 159 165 168 177,8 193,7 203 216 219	88,9 3-1/2 88,9 3-1/2 100 - 102 4 108 - 114 4-1/2 127 5 133 - 127 5 133 - 152 6 159 - 166 - 177,8 - 193,7 - 203 8 216 - 219 -	88.9 3.1/2 3 88.9 3.1/2 3 100 - - 102 4 3.1/2 108 - - 102 4 3.1/2 108 - - 114 4.1/2 4 127 5 - 133 - - 134 - - 135 - - 140 5 - 152 6 - 159 - - 166 - 6 168 6 6 177.8 - - 193,7 - - 203 8 - 216 - -	88,9 3-1/2 3 7088.9-** 88,9 3-1/2 3 8088.9-** 100 8100-** 102 4 3-1/2 8102-** 102 4 3-1/2 8102-** 102 4 3-1/2 8102-** 108 8102-** 8102-** 104 4-1/2 4 8114-** 127 5 8127-** 8133-** 133 9127-** 8133-** 133 9133-** 9133-** 140 5 9140-** 9140-** 152 6 9152-** 9159-** 155 9165-** 9165-** 168 6 9168-** 9167-** 168 6 9168-** 937 177.8 10178.** 937 93.7 10193.7** 937 203 8 10216-** 216 <td< th=""><th>$88,9$ $3-1/2$ 3 $7088.9**$ $88,9$ $3-1/2$ 3 $808.9**$ 100 1 8100^** 3100^** 102 4 $3-1/2$ 8100^** 3100^** 102 4 $3-1/2$ 8102^** 3108^** 102 4 $3-1/2$ 8102^** 3108^** 108 8102^** 3108^** 3114^** 114 $4-1/2$ 4 8102^** 3114^** 127 5 8133^** 3114^** 133 3133^** 9127^*** 313^** 133 9133^** 9137^** 351^** 140 5 9140^*** 9159^*** 98^* 152 6 9165^*** 9165^*** 9165^*** 168 6 9168^*** 336^* 336^* 1037^*** 336^* 10216^*** 336^* 1037^**** 8^* 10216^**** 336^* 336^*</th><th>88.9 $3.1/2$ 3 7088.9-** 206 88.9 $3.1/2$ 3 8088.9-** 206 206 100 102 4 $3.1/2$ 8088.9-** 206 206 102 4 $3.1/2$ 8100-** 206 208 206 208 102 4 $3.1/2$ $8102-**$ $8102-**$ 206 208 211 211 211 $4.1/2$ 4.00 $8102-**$ 211 8.19 211 211 8.19 211 8.19 211 8.19 211 8.19 8.19 211 8.19 8.11 $8.$</th><th>88.9 $3 \cdot 1/2$ 3 $7088.9 \cdot * *$ 10 10 10 $3 \cdot 1/2$ $3088.9 \cdot * *$ $8088.9 \cdot * *$ $8088.9 \cdot * *$ $8088.9 \cdot * *$ $8088.9 \cdot * *$ $800 \cdot * * *$ $800 \cdot * * * * *$ $800 \cdot * * * * * *$ $800 \cdot * * * * * * * * *$ $800 \cdot * * * * * * * * * * * * * * * * * *$</th><th>88.9 $3.1/2$ 3 7088.9-** 100 102 $3.1/2$ $3088.9-**$ $808.9-**$ $808.9-**$ $808.9-**$ $808.9-**$ $808.9-**$ $808.9-**$ $808.9-**$ $809.8-**$ $8100-**$ 208 168 168 168 168 102 4 $3.1/2$ $8102-**$ $8102-**$ $8108-**$ $8114-**$ $8114-**$ $8114-**$ 8.19 8.19 6.1 8.07 7.87 7.87<!--</th--><th>88.9.93-1/237088.9-**61188.9.93-1/238088.9-**8100-**8100-**8100-**8100-**8108-</th></th></td<>	$88,9$ $3-1/2$ 3 $7088.9**$ $88,9$ $3-1/2$ 3 $808.9**$ 100 1 8100^** 3100^** 102 4 $3-1/2$ 8100^** 3100^** 102 4 $3-1/2$ 8102^** 3108^** 102 4 $3-1/2$ 8102^** 3108^** 108 $ 8102^**$ 3108^** 3114^** 114 $4-1/2$ 4 8102^** 3114^** 127 5 $ 8133^**$ 3114^** 133 $ 3133^**$ 9127^*** 313^** 133 $ 9133^**$ 9137^** 351^** 140 5 9140^*** 9159^*** 98^* 152 6 9165^*** 9165^*** 9165^*** 168 6 9168^*** 336^* 336^* 1037^*** 336^* 10216^*** 336^* 1037^**** 8^* 10216^**** 336^* 336^*	88.9 $3.1/2$ 3 7088.9-** 206 88.9 $3.1/2$ 3 8088.9-** 206 206 100 102 4 $3.1/2$ 8088.9-** 206 206 102 4 $3.1/2$ 8100-** 206 208 206 208 102 4 $3.1/2$ $8102-**$ $8102-**$ 206 208 211 211 211 $4.1/2$ 4.00 $8102-**$ 211 8.19 211 211 8.19 211 8.19 211 8.19 211 8.19 8.19 211 8.19 211 8.19 211 8.19 211 8.19 211 8.19 211 8.19 211 8.19 211 8.19 211 8.19 211 8.19 211 8.19 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 $8.$	88.9 $3 \cdot 1/2$ 3 $7088.9 \cdot * *$ 10 10 10 $3 \cdot 1/2$ $3088.9 \cdot * *$ $8088.9 \cdot * *$ $8088.9 \cdot * *$ $8088.9 \cdot * *$ $8088.9 \cdot * *$ $800 \cdot * * *$ $800 \cdot * * * * *$ $800 \cdot * * * * * *$ $800 \cdot * * * * * * * * *$ $800 \cdot * * * * * * * * * * * * * * * * * *$	88.9 $3.1/2$ 3 7088.9-** 100 102 $3.1/2$ $3088.9-**$ $808.9-**$ $808.9-**$ $808.9-**$ $808.9-**$ $808.9-**$ $808.9-**$ $808.9-**$ $809.8-**$ $8100-**$ 208 168 168 168 168 102 4 $3.1/2$ $8102-**$ $8102-**$ $8108-**$ $8114-**$ $8114-**$ $8114-**$ 8.19 8.19 6.1 8.07 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 </th <th>88.9.93-1/237088.9-**61188.9.93-1/238088.9-**8100-**8100-**8100-**8100-**8108-</th>	88.9.93-1/237088.9-**61188.9.93-1/238088.9-**8100-**8100-**8100-**8100-**8108-

470

630

24.80

18.50

11273-**

11324-**

12356-**

12406-**

470

630

24.80

18.50

395

534

21.02

15.55

410 8

530

20.87

20

.79

16.14 .31 162

6.38

182

7.16

See page 36 for STAUFF Group 3S to 6S (DIN Group 1 to 4).

10

12

14

16

Additional outside diameters are available upon request. Please contact STAUFF for further information.

•	
Clamp Body	*7*060.3-*PP
One clamp body is consisting of two	clamp halves.
 * 1st part of STAUFF Group * Exact outside diameter Ø D1 (mm * Material code (see below)) 060.3 PP
Standard Materials	

Standard Materials

Colour: Black Material code: PP-BK

Polyamide Colour: Black Material code: PA

Aluminium Colour: Self-Colour Material code: AL

See pages 154 / 155 for material properties and technical information.

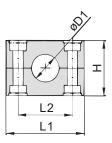
Special Materials

Please contact STAUFF for further details on fire-proof clamp body materials, tested and approved according to several international fire-protection standards (such as BS 6853, EN 45545-2, UL 94 and many more).

See pages 156 / 157 for material properties and technical information.

Product Features

- · Proven, tested and trusted product in various markets
- Recommended for the safe installation of rigid pipes and tubes
- Available for all commonly used pipe and tube outside diameters
- Environmental protection due to vibration/noise reducing design
- · Excellent weathering resistance, even under extreme conditions

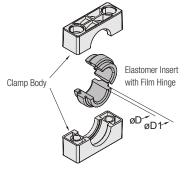

В

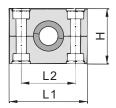
R STAUFF

Clamp Body • Type H

Smooth Inside Surface without Tension Clearance

Ordering Codes	Group		Outside Diameter Hose		Ordering Codes (2 Clamp	Dimensions (^{mm} / _{in})					
	LAU	DIN	Ø D1		Halves)						
lamp Body *3*006-*PP-H	s,	ā	(mm)	(in)	(** -H = Material)	L1	L2	H	Width		
			6		3006- ** -H						
e clamp body is consisting of two clamp halves.			6,4	1/4	3006.4- ** -H						
			8	5/16	3008- ** -Н						
1 st part of STAUFF Group 3			9,5	3/8	3009.5- ** -H						
Exact outside diameter Ø D1 (mm) 006			10		3010- ** -H						
Material code (see below) PP-H			12		3012- ** -Н	55	33	30,5	30,5		
	3S	1	12,7	1/2	3012.7- ** -H	2.16	1.30	1.20	1.20		
			13,5		3013.5- ** -H	2.10	1.00	1.20			
ndard Materials			14		3014- ** -Н						
			15		3015- ** -H						
Polypropylene			16	5/8	3016- ** -H						
Colour: Green			17,2		3017.2- ** -H						
Material code: PP-H			18		3018- ** -H						
			19	3/4	4019- ** -H						
Polypropylene			20		4020- ** -H						
Colour: Green			21,3		4021.3- ** -H						
Material code: PP-H-BK			22	7/8	4022- ** -H	70	45	46,5	30,5		
	4S	2	25		4025- ** -H	2.76	1.77	1.83	1.20		
Polyamide			25,4	1	4025.4- ** -H						
Colour: Black			26,9		4026.9- ** -H						
Material code: PA-H			28		4028- ** -H						
			30		4030- ** -H						
Thermoplastic Elastomer (87 Shore-A)			30		5030- ** -H						
Colour: Black					32	1-1/4	5032- ** -H				
Material code: SA-H				33,7		5033.7- ** -H	1				
			35		5035- ** -H	85	60	58	30,5		
pages 154 / 155 for material properties and technical	5S	3	38	1-1/2	5038- ** -H	3.35	2.36	2.28	1.20		
mation.			40		5040- ** -H						
mauon.			41,3		5041.3- ** -H	1					
ecial Materials			42		5042- ** -H						
			38	1-1/2	6038- ** -H						
se contact STAUFF for further details on fire-proof			42		6042- ** -H						
np body materials, tested and approved according			44,5	1-3/4	6044.5- ** -H						
everal international fire-protection standards			48,3		6048.3- ** -H						
h as BS 6853, EN 45545-2, UL 94 and many more).			50,8	2	6050.8- ** -H	115	90	87	45		
n as 65 6653, EN 45545-2, UL 94 and many more).			55		6055- ** -H	4.53	3.54	3.43	1.77		
name 156 / 157 for motorial properties	6S	4	57		6057- ** -H						
pages 156 / 157 for material properties			57,2	2-1/4	6057- ** -H						
technical information.			60,3	2 1/7	6060.3- ** -H						
duct Ecotures			63,5	2-1/2	6063.5- ** -H						
oduct Features			65	2-1/2	6065- ** -H						
Proven, tested and trusted product in various markets			70	2-3/4	6070- ** -H						


- Proven, tested and trusted product in various markets
- · Recommended for the safe installation of hoses and cables
- Chamfered edges avoid damaging of the hose or cable
- Available for all commonly used hose and cable outside diameters
- Excellent weathering resistance, even under extreme conditions


Additional outside diameters are available upon request. Please contact STAUFF for further information.

В

Clamp Body with Elastomer Insert Type RI

Group			e Diameter	•	(** R = Clamp I		Dimensions							
壯		Pipe / T	Tube / Hose	Clamp Assembly	Clamp Body	Insert *	(^{mm} / _{in})							
STAUFF	NIQ	ØD		(Clamp Body +										
S	D	(mm	(in	Insert	(2 Clamp Halves		Ø D1	L1	L2	Н	Widt			
		6		4006- ** -R		RI-06-4/4S								
		8	5/16	4008- ** -R		RI-08-4/4S								
		10		4010- ** -R		RI-10-4/4S								
		12		4012- ** -R		RI-12-4/4S								
		12,7	1/2	4012.7- ** -R		RI-12.7-4/4S	25	70	45	46,5	30,5			
4S	2	14		4014- ** -R	4S- ** -R	RI-14-4/4S	.98	2.76	1.77	40,3	1.20			
		15		4015- ** -R		RI-15-4/4S		2.10	1.77	4.00	1.20			
		16	5/8	4016- ** -R		RI-16-4/4S								
		17,2		4017.2- ** -R		RI-17.2-4/4S								
		18		4018- ** -R		RI-18-4/4S								
		19	3/4	4019- ** -R		RI-19-4/4S								
		20		5020- ** -R		RI-20-6/5S								
		21,3		5021.3- ** -R		RI-21.3-6/5S								
		22	7/8	5022- ** -R		RI-22-6/5S								
5S	3	25		5025- ** -R	5S- ** -R	RI-25-6/5S	38	85	60	58	30,5			
55	3	26,9		5026.9- ** -R	39- ** -N	RI-26.9-6/5S	1.50	3.35	2.36	2.28	1.20			
		28		5028- ** -R		RI-28-6/5S								
		30		5030- ** -R		RI-30-6/5S								
		32	1-1/4	5032- ** -R		RI-32-6/5S								
		32	1-1/4	6032- ** -R		RI-32-6S								
		33,7		6033.7- ** -R		RI-33.7-6S								
		35		6035- ** -R		RI-35-6S								
		38,7		6038.7- ** -R		RI-38.7-6S					45			
		40		6040- ** -R		RI-40-6S				07				
6S	4	42		6042- ** -R	6S- ** -R	RI-42-6S	64	115 4.53	90	87 3.43				
		45,5		6045.5- ** -R		RI-45.5-6S	2.52	4.53	3.54	3.43	1.77			
		48		6048- ** -R		RI-48-6S								
		51	2	6051- ** -R		RI-51-6S								
		53,4		6053.4- ** -R		RI-53.4-6S								
		56,4		6056.4- ** -R		RI-56.4-6S								
		55		7055- ** -R		RI-55-7S								
		57	2-1/4	7057- ** -R		RI-57-7S								
		60		7060- ** -R		RI-60-7S								
	_	63,5	2-1/2	7063.5- ** -R		RI-63.5-7S	88	154	122	120	60			
7S	5	65		7065- ** -R	7S- ** -R	RI-65-7S	3.56	6.06	4.80	4.72	2.36			
		70	2-3/4	7070- ** -R		RI-70-7S								
		72		7072- ** -R		RI-72-7S								
		76	3	7076- ** -R		RI-76-7S								
		80		8080- ** -R		RI-80-8S			105	105	0.0			
8S	6	88,9	3-1/2	8088.9- ** -R	8S- ** -R	RI-88.9-8S	114	208	168	168	80			
		102		8102- ** -R		RI-102-8S	4.49	8.11	6.61	6.61	3.15			
		114		9114- ** -R		RI-114-9S	153	051	0.0-	0.00	0.1			
9S	7	133	5-1/4	9133- ** -R	9S- ** -R	RI-133-9S	150	251	205	200	91			
		140		9140- ** -R		RI-140-9S	5.91	9.88	8.07	7.87	3.58			
		150		10150- ** -R		RI-150-10S								
		165		10165- ** -R		RI-165-10S	200	336	265	270	120			
10S	8	168		10168- ** -R	10S- ** -R	RI-168-10S	7.87		10.43					
		172		10172- ** -R		RI-172-10S								

* Elastomer Inserts for Heavy Series clamp bodies, STAUFF Group 4S also fit into Standard Series clamp bodies, STAUFF Group 4. Elastomer Inserts for Heavy Series clamp bodies, STAUFF Group 5S also fit into Standard Series clamp bodies, STAUFF Group 6.

Additional outside diameters are available upon request. Please contact STAUFF for further information.

Ordering C	odes	
Clamp Assem	bly	*4*006-*PP-R
One assembly is co	nsisting of one clan	np body and one insert.
 * 1st part of STAUF * Exact outside dia * Material code (s 	ameter Ø D (mm)	4 006 PP-R
Clamp Body		*4S-*PP-R
One clamp body is	consisting of two	clamp halves.
STAUFF GroupMaterial code (s	ee below)	4S PP-R
Elastomer Ins	ert	*RI-*06-*4/4S
* Elastomer Insert * Exact outside dia * STAUFF Group		· /
	TUS (Heavy)	105

Standard Materials

Colour: Black Material code: PP-R

Polyamide Colour: Black Material code: PA-R

Elastomer Insert

4S to 6S: Thermoplastic Elastomer (73 Shore-A) 7S to 10S: EPDM (70 Shore-A) Colour: Black

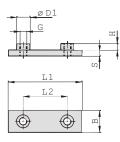
See pages 154 / 155 for material properties and technical information.

Special Materials

Please contact STAUFF for further details on fire-proof clamp body materials, tested and approved according to several international fire-protection standards (such as BS 6853, EN 45545-2, UL 94 and many more).

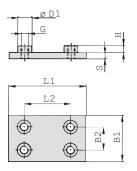
See pages 156 / 157 for material properties and technical information.

Product Features


- Proven, tested and trusted product in various markets
- · Either for the extra vibration/noise reducing installation of pipes and tubes or the extra gentle installation of hoses and cables
- · Available for all commonly used outside diameters
- Excellent weathering resistance, even under extreme conditions

www.stauff.com/1/en/#39

Weld Plate for Single Clamps Type SPAL

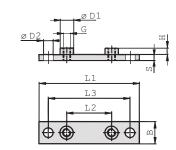


	G	iroup		Dimensi	ons (mm/in)	Ordering Codes						
Ordering C	odes	S	TAUFF	DIN	L1	L2	В	S	Н	Thread G	ØD1	(Standard Options)
		2	S	4	74	33	30	8	8	M10	18	SPAL-3S-M-W2
Weld Plate	*SPAL-*3S-*M-*V	V2 °	0	1	2.91	1.30	1.18	.31	.31	3/8-16 UNC	.71	SPAL-3S-U-W2
			S	2	86	45	30	8	8	M10	18	SPAL-4S-M-W2
* Weld Plate for S	Single Clamps SPAL		3	2	3.39	1.77	1.18	.31	.31	3/8-16 UNC	.71	SPAL-4S-U-W2
			S	3	100	60	30	8	8	M10	18	SPAL-5S-M-W2
* STAUFF Group		3S 5	3	3	3.94	2.36	1.18	.31	.31	3/8-16 UNC	.71	SPAL-5S-U-W2
* Thread code	Metric ISO thread	M	S	4	140	90	45	10	8	M12	20	SPAL-6S-M-W2
	Unified coarse (UNC) thread	U	3	4	5.51	3.54	1.77	.39	.31	7/16-14 UNC	.78	SPAL-6S-U-W2
	()		7S 5	5 5	180	122	60	10	12	M16	24	SPAL-7S-M-W2
* Material code			3	5	7.09	4.80	2.36	.39	.47	5/8-11 UNC	.94	SPAL-7S-U-W2
		W2	S 6	e	226	168	80	15	18	M20	30	SPAL-8S-M-W1
	Carbon Steel, zinc/nickel-plated	W3 8	03 0	0	8.90	6.61	3.15	.59	.71	3/4-10 UNC	1.18	SPAL-8S-U-W1
	Stainless Steel V2A		S	7	270	205	90	15	21	M24	35	SPAL-9S-M-W1
	1.4301 / 1.4305 (AISI 304 / 303)	W4 9	3	1	10.63	8.07	3.54	.59	.83	7/8–9 UNC	1.38	SPAL-9S-U-W1
	Stainless Steel V4A	1	0S	8	340	265	120	25	21	M30	45	SPAL-10S-M-W1
	1.4401 / 1.4571 (AISI 316 / 316 Ti)	W5 1	03	0	13.39	10.43	4.72	.98	.83	1-1/8-7 UNC	1.77	SPAL-10S-U-W1
	``````````````````````````````````````	- 1	1S	9	520	395	160	30	38	M30	50	SPAL-11S-M-W1
			13	3	20.47	15.55	6.30	1.18	1.50	1-1/4-7 UNC	1.97	SPAL-11S-U-W1
			2S	10	680	534	180	30	38	M30	50	SPAL-12S-M-W1
		1	23	10	27.16	21.02	7.09	1.18	1.50	1-1/4-7 UNC	1.97	SPAL-12S-U-W1

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

## Weld Plate for Double Clamps Type SPAS






		Group		Dimens	ions ( ^{mm} /	in)						Ordering Codes
<b>Ordering Co</b>	odes	STAUFF	DIN	L1	L2	B1	B2	S	Н	Thread G	ØD1	(Standard Options)
		35	4	74	33	60	30,5	8	8	M10	18	SPAS-3S-M-W2
Weld Plate	*SPAS-*3S-*M-*W2	33		2.91	1.30	2.36	1.20	.31	.31	3/8-16 UNC	.71	SPAS-3S-U-W2
inola i lato		4S	2	86	45	60	30,5	8	8	M10	18	SPAS-4S-M-W2
* Weld Plate for D	puble Clamps SPAS		2	3.39	1.77	2.36	1.20	.31	.31	3/8-16 UNC	.71	SPAS-4S-U-W2
Weld Flate IOI D	Suble Glamps SFA	5S	3	100	60	60	30,5	8	8	M10	18	SPAS-5S-M-W2
* STAUFF Group	35		0	3.94	2.36	2.36	1.20	.31	.31	3/8-16 UNC	.71	SPAS-5S-U-W2
		6S	4	140	90	90	46	10	8	M12	20	SPAS-6S-M-W2
Thread code	Metric ISO thread	00	7	5.51	3.54	3.54	1.81	.39	.31	7/16-14 UNC	.78	SPAS-6S-U-W2
	Unified coarse (UNC) thread	U 7S 5		180	122	120	61	10	12	M16	24	SPAS-7S-M-W2
+ Matarial anda	Carbon Charl uncented	/3	5	7.09	4.80	4.72	2.40	.39	.47	5/8-11 UNC	.94	SPAS-7S-U-W2
* Material code	Carbon Steel, uncoated W1	8S	6	226	168	160	81	15	18	M20	30	SPAS-8S-M-W1
	Carbon Steel, phosphated W2		0	8.90	6.61	6.61	3.19	.59	.71	3/4-10 UNC	1.18	SPAS-8S-U-W1
	Carbon Steel, zinc/nickel-plated	9S	7	270	205	180	91	15	21	M24	35	SPAS-9S-M-W1
	Stainless Steel V2A	93	1	10.63	8.07	7.09	3.58	.59	.83	7/8–9 UNC	1.38	SPAS-9S-U-W1
	W2	10S	8	340	265	240	121	25	21	M30	45	SPAS-10S-M-W1
	1.4301 / 1.4305 (AISI 304 / 303)	103	0	13.39	10.43	9.45	4.78	.98	.83	1-1/8-7 UNC	1.77	SPAS-10S-U-W1
	Stainless Steel V4A	11S	9	520	395	324	166	30	38	M30	50	SPAS-11S-M-W1
	1.4401 / 1.4571 (AISI 316 / 316 Ti)	Ti)		20.47	15.55	12.76	6.54	1.18	1.50	1-1/4-7 UNC	1.97	SPAS-11S-U-W1
		125		680	534	364	186	30	38	M30	50	SPAS-12S-M-W1
		123	10	27.16	21.02	14.33	7.32	1.18	1.50	1-1/4-7 UNC	1.97	SPAS-12S-U-W1

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

**Elongated Weld Plate for Single Clamps** 

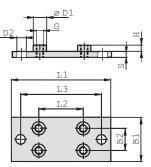
# STAUFF[®]



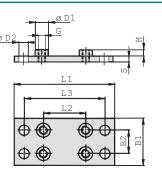




B


	1	

**Type SPAL-DUEB** 


Group		Dimen	sions (m	^m /in)							Ordering Codes
STAUFF	DIN	L1	L2	L3	В	S	Н	Thread G	ØD1	ØD2	(Standard Options)
3S	1	113	33	85	30	8	8	M10	18	13	SPAL-DUEB-3S-M-W2
35	1	4.45	1.30	3.35	1.18	.31	.31	3/8-16 UNC	.71	.51	SPAL-DUEB-3S-U-W2
4S	2	125	45	97	30	8	8	M10	18	13	SPAL-DUEB-4S-M-W2
45	2	4.92	1.77	3.82	1.18	.31	.31	3/8-16 UNC	.71	.51	SPAL-DUEB-4S-U-W2
5S	3	140	60	112	30	8	8	M10	18	13	SPAL-DUEB-5S-M-W2
55	3	5.51	2.36	4.41	1.18	.31	.31	3/8-16 UNC	.71	.51	SPAL-DUEB-5S-U-W2
6S	4	187	90	155	45	10	8	M12	20	16	SPAL-DUEB-6S-M-W2
05	4	7.36	3.54	6.10	1.77	.39	.31	7/16-14 UNC	.78	.62	SPAL-DUEB-6S-U-W2
7S	5	238	122	198	60	10	12	M16	24	21	SPAL-DUEB-7S-M-W2
15	5	9.37	4.80	7.80	2.36	.39	.47	5/8-11 UNC	.94	.83	SPAL-DUEB-7S-U-W2
8S	6	309	168	259	80	15	18	M20	30	26	SPAL-DUEB-8S-M-W1
03	0	12.17	6.61	10.20	3.15	.59	.71	3/4-10 UNC	1.18	1.02	SPAL-DUEB-8S-U-W1
9S	7	370	205	310	90	15	21	M24	35	31	SPAL-DUEB-9S-M-W1
95	1	14.57	8.07	12.20	3.54	.59	.83	7/8–9 UNC	1.38	1.22	SPAL-DUEB-9S-U-W1
10S	8	460	265	400	120	25	21	M30	45	31	SPAL-DUEB-10S-M-W1
105	0	18.11	10.43	15.75	4.72	.98	.83	1-1/8-7 UNC	1.77	1.22	SPAL-DUEB-10S-U-W1
11S	9	590	395	530	160	30	38	M30	50	31	SPAL-DUEB-11S-M-W1
115	9	23.23	15.55	20.87	6.30	1.18	1.50	1-1/4-7 UNC	1.97	1.22	SPAL-DUEB-11S-U-W1
12S	10	750	534	690	180	30	38	M30	50	31	SPAL-DUEB-12S-M-W1
125	10	29.53	21.02	27.17	7.09	1.18	1.50	1-1/4-7 UNC	1.97	1.22	SPAL-DUEB-12S-U-W1

Ordering Codes									
Weld Plate *	SPAL-DUEB-*3S-*M-*\	N2							
* Elongated Weld I	Plate for Single Clamps SPAL-D	UEB							
* STAUFF Group		3S							
* Thread code	Metric ISO thread Unified coarse (UNC) thread	M U							
* Material code	Carbon Steel, uncoated Carbon Steel, phosphated Carbon Steel, zinc/nickel-plated Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303) Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W1 W2 W3 W4 W5							

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.



#### STAUFF Group 3S to 9S



### STAUFF Group 10S to 12S

Group		( ^{mm} /in <b>)</b>								Ordering Codes		
STAUFF	DIN	L1	L2	L3	B1	B2	S	Н	Thread G	ØD1	ØD2	(Standard Options)
3S	1	113	33	85	60	30,5	8	8	M10	18	13	SPAS-DUEB-3S-M-W2
33	1	4.45	1.30	3.35	2.36	1.20	.31	.31	3/8-16 UNC	.71	.51	SPAS-DUEB-3S-U-W2
4S	2	125	45	97	60	30,5	8	8	M10	18	13	SPAS-DUEB-4S-M-W2
43	2	4.92	1.77	3.82	2.36	1.20	.31	.31	3/8-16 UNC	.71	.51	SPAS-DUEB-4S-U-W2
5S	3	140	60	112	60	30,5	8	8	M10	18	13	SPAS-DUEB-5S-M-W2
55	3	5.51	2.36	4.41	2.36	1.20	.31	.31	3/8-16 UNC	.71	.51	SPAS-DUEB-5S-U-W2
6S	4	187	90	155	90	46	10	8	M12	20	16	SPAS-DUEB-6S-M-W2
03	4	7.36	3.54	6.10	3.54	1.81	.39	.31	7/16-14 UNC	.78	.62	SPAS-DUEB-6S-U-W2
7S	5	238	122	198	120	61	10	12	M16	24	21	SPAS-DUEB-7S-M-W2
13	5	9.37	4.80	7.80	4.72	2.40	.39	.47	5/8-11 UNC	.94	.83	SPAS-DUEB-7S-U-W2
8S	6	309	168	259	160	81	15	18	M20	30	26	SPAS-DUEB-8S-M-W1
03	0	12.17	6.61	10.20	6.61	3.19	.59	.71	3/4-10 UNC	1.18	1.02	SPAS-DUEB-8S-U-W1
9S	7	370	205	310	180	91	15	21	M24	35	31	SPAS-DUEB-9S-M-W1
93	1	14.57	8.07	12.20	7.09	3.58	.59	.83	7/8–9 UNC	1.38	1.22	SPAS-DUEB-9S-U-W1
10S	8	460	265	400	240	121	25	21	M30	45	31	SPAS-DUEB-10S-M-W1
103	0	18.11	10.43	15.75	9.45	4.78	.98	.83	1-1/8-7 UNC	1.77	1.22	SPAS-DUEB-10S-U-W1
11S	9	590	395	530	324	166	30	38	M30	50	31	SPAS-DUEB-11S-M-W1
115	3	23.23	15.55	20.87	12.76	6.54	1.18	1.50	1-1/4-7 UNC	1.97	1.22	SPAS-DUEB-11S-U-W1
12S	10	750	534	690	364	186	30	38	M30	50	31	SPAS-DUEB-12S-M-W1
123	10	29.53	21.02	27.17	14.33	7.32	1.18	1.50	1-1/4-7 UNC	1.97	1.22	SPAS-DUEB-12S-U-W1

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

# Elongated Weld Plate for Double Clamps Type SPAS-DUEB



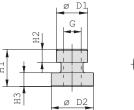
### Design for STAUFF Group 10S to 12S

## **Ordering Codes**

Weld Plate *SPAS-DUE	B-*3S-*M-*W2
----------------------	--------------

* Elongated Weld Plate for Double Clamps SPAS-DU							
* STAUFF Group		3S					
* Thread code	Metric ISO thread Unified coarse (UNC) thread	M U					
* Material code	Carbon Steel, uncoated Carbon Steel, phosphated Carbon Steel, zinc/nickel-plated	W1 W2 W3					
	Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303) Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W4 W5					




# **Mounting Rail Nut**

Stainless Steel V4A

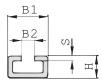
1.4401 / 1.4571 (AISI 316 / 316 Ti)

(for Use with Mounting Rail STSV) **Type GMV** 








Ordering C	odes		Group STAUFF	DIN	Dimensi ØD1	ons ( ^{mm} /in) ØD2	H1	H2	H3	Thread G	Ordering Codes (Standard Options)
Mounting Rail Nut *GMV-*3-5S*M-*W3			3S	1							
* Mounting Rail Nut GMV			4S	2	17,8	24	21	7,6	7,4	M10	GMV-3-5S-M-W3
* STAUFF Group	3S to 5S (DIN Group 1 to 3)	3-5S	45	2	.70	.94	.83	.30	.29	3/8-16 UNC	GMV-3-5S-U-W3
* Thread code	6S (DIN Group 4) Metric ISO thread Unified coarse (UNC) thread	6S M U	5S	3							
* Material code	Carbon Steel, zinc/nickel-plated	W3	6S	4	19,8	24	23	8,8	8,8	M12	GMV-6S-M-W3
	Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303)	W4	00	4	.78	.94	.91	.35	.35	7/16-14 UNC	GMV-6S-U-W3

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

## **Mounting Rail**

(for Use with Mounting Rail Nut GMV) **Type STSV** 





			Group		Dimension	S (""'/in)	
Ordering C	odes		STAUFF	DIN	B1	B2	Н
Mounting Rai	i *STSV-*1M-*W	1	3S	1			
* Mounting Rail	STS	sv	4S	2			
* Length of rail		М	43	2	40	13	22
		2M	50	0	1.57	.51	.86
	Alternative lengths available upon reques Contact STAUFF for further information		5S	3			
* Material code	Carbon Steel, uncoated V Carbon Steel, zinc-plated,	V1	6S	4			
	blue-chromated	32					
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	V5	Alternativ	e materia	ls and surfac	ce finishings	are availat

W5

Group		Dimension	S ( ^{mm} /in)			Ordering Codes (Standard Options)				
STAUFF	DIN	B1	B2	Н	S	Length of Rail: 1 m / 3.28 ft	Length of Rail: 2m / 6.56ft			
3S	1									
4S	2	40	13	22	5	CTCV 1M W1	STSV -2M-W1			
5S	3	1.57	.51	.86	.19	STSV -1M-W1	515V -2INI-W I			
6S	4									

able upon request. Contact STAUFF for further information.

В



# Channel Rail Adaptor

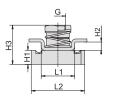
*CRA-*3-5S-*M-*W3

CRA

3-5S

6S

Μ


U

W3

W5

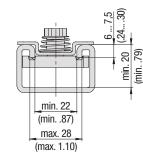
В

(for Use with Various Channel Rails) Type CRA



5	
at-	102

Group		Dimensions (m	ⁿ /in)	Ordering Codes							
STAUFF	DIN	Thread G	L1	L2	L3	B1	B2	H1	H2	H3	(Standard Options)
3S	1										
4S	2	M10	22	35	38	22	20,5	9,2	5,5	27,5	CRA-3-5S-M-W3
	-	3/8-16 UNC	.87	1.38	1.50	.87	.81	.36	.22	1.08	CRA-3-5S-U-W3
5S	3										
6S	4	M12	21,5	35	45	25	19	9,2	5	27,5	CRA-6S-M-W3
03	4	7/16-14 UNC	.85	1.38	1.77	.98	.75	.36	.20	1.08	CRA-6S-U-W3


All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

### **Compatibility with Channel Rails**

The STAUFF Channel Rail Adaptor, type CRA is suitable for various channel rails, including the following types:

HALFEN	HILTI	UNISTRUT®	STAUFF (Cushion Clamp Series)
HM 41/41	MQ-21, MQ-41, MQ-52, MQ-72	P1000, P1000T, P1000V, P1000VT, P1001	SCS-048-1-PL, SCS-048-1-GR
HZA 41/22	MQ-21U, MQ-41U, MQ-72U	P2000, P2000T	SCS-120-1-PL, SCS-120-1-GR
HZM 41/41	MQ-21D, MQ-41D, MQ-52-72D	P3003, P3003T, P3300V, P3300VT, P3301	See page 149 for technical information.
HZM 41/22		P4000, P4000T	
HL 41/41, HL 41/B2		P5000, P5000T, P5001, P5500, P5500T, P5501	

Contact STAUFF to check compatibility with additional types of channel rails.



Basic dimensional requirements for channel rails to be used with STAUFF Channel Rail Adaptors, type CRA

#### Recommended Bolt Lengths when using the Channel Rail Adaptor, Type CRA

Group		Hexagon Head Bolts AS (used with Cove	r Plates DPAL or DPAS)	Socket Cap Screws IS (used without Cover Plates DPAL or DPAS)				
STAUFF	DIN	Metric ISO thread	Unified coarse (UNC) thread	Metric ISO thread	Unified coarse (UNC) thread			
3S	1	M10 x 40	3/8-16 UNC x 1-1/2	M10 x 25	3/8-16 UNC x 1			
4S	2	M10 x 55	3/8-16 UNC x 2-1/4	M10 x 40	3/8-16 UNC x 1-1/2			
5S	3	M10 x 65	3/8–16 UNC x 2-3/4	M10 x 50	3/8–16 UNC x 2			
6S	4	M12 x100	7/16-14 UNC x 3-3/4	M12 x 75	7/16-14 UNC x 3			

Clamp assemblies including Channel Rail Adaptors, type CRA are supplied with the recommended bolt lengths by default. See page 48 for further information on ordering.

Catalogue 1 - Edition 08/2022



www.stauff.com/1/en/#43

**Ordering Codes** 

* Channel Rail Adaptor

* STAUFF Group 3S to 5S (DIN Group 1 to 3)

6S (DIN Group 4)

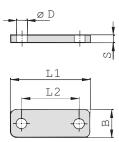
Metric ISO thread

Stainless Steel V4A

Unified coarse (UNC) thread

Carbon Steel, zinc/nickel-plated

1.4401 / 1.4571 (AISI 316 / 316 Ti)


**Adaptor** 

* Thread code

* Material code

# **STAUFF**[®]

Cover Plate for Single Clamps Type DPAL





		Group		Dimension	S ( ^{mm} /in)				Ordering Codes
<b>Ordering C</b>	odes	STAUFF	DIN	L1	L2	В	S	ØD	(Standard Options)
		3S	1	55	33	30	8	11	DPAL-3S-W2
Cover Plate *DPAL-*3S-*		33	1	2.16	1.30	1.18	.31	.43	DFAL-55-WZ
		4S	2	70	45	30	8	11	DPAL-4S-W2
* Cover Plate for Single Clamps DPAL		40	-	2.76	1.77	1.18	.31	.43	DI AL-40-WZ
	° ,	5S	3	85	60	30	8	11	DPAL-5S-W2
* STAUFF Group	35	55	5	3.35	2.36	1.18	.31	.43	DFAL-33-WZ
* Material code	Carbon Steel, uncoated W1	6S	4	115	90	45	10	14	DPAL-6S-W2
Carbon Steel, phosphated	· · · · · · · · · · · · · · · · · · ·	03		4.53	3.54	1.77	.39	.55	
	Carbon Steel, zinc/nickel-plated W3	7S	5	152	122	60	10	19	DPAL-7S-W2
	·····	13	5	5.98	4.80	2.36	.39	.75	DFAL-73-WZ
	Stainless Steel V2A W4	8S	6	206	168	80	15	22	DPAL-8S-W1
	1.4301 / 1.4305 (AISI 304 / 303)	85	0	8.11	6.61	3.15	.59	.87	DFAL-03-WI
	Stainless Steel V4A W5	9S	7	251	205	90	15	26	DPAL-9S-W1
	1.4401 / 1.4571 (AISI 316 / 316 Ti)	93	1	9.88	8.07	3.54	.59	1.02	DFAL-93-WI
	Aluminium EN AW-6060	10S	8	320	265	120	25	35	DPAL-10S-W1
	(for group sizes 3S to 5S only) W85	105	0	12.60	10.43	4.72	.98	1.38	DFAL-105-WI
	(	115	9	470	395	160	30	35	DPAL-11S-W1
		- 115	9	18.50	15.55	6.30	1.18	1.38	DPAL-115-W1
		100	10	630	534	180	30	35	DDAL 100 W/1
		12S	10	24.80	21.02	7.09	1.18	1.38	DPAL-12S-W1

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

## Cover Plate for Double Clamps Type DPAS



øD	
	t
	Ω I
L1	
L2	
$\overline{\mathbf{\Phi}}$	
$\oplus$	m m m

		Group		Dimensions ( ^{mm} / _{in} )						Ordering Codes		
Ordering Co	odes		STAUFF	DIN	L1	L2	B1	B2	S	ØD	(Standard Options)	
			3S	1	55	33	60	30,5	8	11	DPAS-3S-W2	
Cover Plate	*DPAS-*3S-*W2		33		2.16	1.30	2.36	1.20	.31	.43	DFA3-33-W2	
			4S	2	70	45	60	30,5	8	11	DPAS-4S-W2	
* Cover Diete for D	Double Clampa	DDAC	40	2	2.76	1.77	2.36	1.20	.31	.43	DFA3-43-WZ	
* Cover Plate for E	Jouble Glamps	DPAS	5S	3	83	60	60	30,5	8	11	DPAS-5S-W2	
* STAUFF Group		3S	55	5	3.27	2.36	2.36	1.20	.31	.43	DI A3-33-W2	
			6S	4	115	90	90	46	10	14	DPAS-6S-W2	
* Material code	Carbon Steel, uncoated	W1	03	4	4.53	3.54	3.54	1.81	.39	.55	DFA3-03-W2	
	Carbon Steel, phosphated W2		7S	5	152	122	120	61	10	19	DPAS-7S-W2	
	Carbon Steel, zinc/nickel-plated	lated W3		5	5.98	4.80	4.72	2.40	.39	.75	DI A3-73-W2	
	,		8S	6	206	168	160	81	15	22	DPAS-8S-W1	
	Stainless Steel V2A	) <b>W4</b>	W4	00	0	8.11	6.61	6.61	3.19	.59	.87	DI A3-03-W1
	1.4301 / 1.4305 (AISI 304 / 303)			9S	7	251	205	180	91	15	26	DPAS-9S-W1
	Stainless Steel V4A	. W5	50	· ·	9.88	8.07	7.09	3.58	.59	1.02	DI A3-33-W1	
	1.4401 / 1.4571 (AISI 316 / 316 T	i) <b>**5</b>	10S	8	320	265	240	121	25	35	DPAS-10S-W1	
			105	0	12.60	10.43	9.45	4.78	.98	1.38	DI A3-103-W1	
			11S	9	470	395	321	166	30	35	DPAS-11S-W1	
				5	18.50	15.55	12.64	6.54	1.18	1.38		
			12S	10	630	534	361	186	30	35	DPAS-12S-W1	
			123	125 10	24.80	21.02	14.21	7.32	1.18	1.38	DI A0-120-W1	

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Bolt *AS-*M10x70-*W1

## **Hexagon Head Bolt Type AS**



#### **Hexagon Head Bolt AS** (according to DIN 931 / 933 or ANSI / ASME B18.2.1.) Dimensions applicable only when used with Cover Plates DPAL or DPAS

Group		Dimensions (mm/in)	Ordering Codes	
STAUFF	DIN	Thread G x L	(Standard Options)	Ordering Codes
	-	M10 x 45	AS-M10x45-W1	
3S	1	3/8-16 UNC x 1-3/4	AS-3/8-16UNCx1-3/4-W3*	Hexagon Head Bolt *AS-*M10x70-*W
40	0	M10 x 60	AS-M10x60-W1	
4S	2	3/8-16 UNC x 2-1/4	AS-3/8-16UNCx2-1/4-W3*	* Type of bolt Hexagon Head Bolt
	0	M10 x 70	AS-M10x70-W1	(according to DIN 931 / 933
5S	3	3/8-16 UNC x 2-3/4	AS-3/8-16UNCx2-3/4-W3*	or ANSI / ASME B18.2.1.)
		M12 x 100	AS-M12x100-W1	· · ·
6S	4	7/16-14 UNC x 4	AS-7/16-14UNCx4-W3*	* Thread type and size acc. to dimension table M10x
	-	M16 x 130	AS-M16x130-W1	* Material code Carbon Steel, uncoated
7S	5	5/8-11 UNC x 5-1/4	AS-5/8-11UNCx5-1/4-W3*	Carbon Steel, zinc/nickel-plated
8S	<u>_</u>	M20 x 190	AS-M20x190-W1	
85	6	3/4-10 UNC x 7-1/2	AS-3/4-10UNCx7-1/2-W1	Stainless Steel V2A
9S	7	M24 x 220	AS-M24x220-W1	1.4301 / 1.4305 (AISI 304 / 303)
95	1	7/8–9 UNC x 8-3/4	AS-7/8-9UNCx8-3/4-W1	Stainless Steel V4A
100	0	M30 x 300	AS-M30x300-W1	1.4401 / 1.4571 (AISI 316 / 316 Ti)
10S	8	1-1/8-7 UNC x 12	AS-1-1/8-7UNCx12-W1	
110	0	M30 x 450	AS-M30x450-W1	
11S	9	1-1/4-7 UNC x 17-1/2	AS-1-1/4-7UNCx17-1/2-W1	* Standard finishing option for Heavy Series group sizes 3S to
100	10	M30 x 560	AS-M30x560-W1	in North America is W3 (Carbon Steel, zinc/nickel-plated).
12S	10	1-1/4-7 UNC x 22	AS-1-1/4-7UNCx22-W1	

1.4401 / 1.4571 (AISI 316 / 316 Ti) ption for Heavy Series group sizes 3S to 7S

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table.

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

# **Socket Cap Screw** Type IS



Socket Cap Screw IS (according to ISO 4762 or ANSI / ASME B18.3) Dimensions applicable only when used without Cover Plates

Group		Dimensions ( ^{mm} / _{in} )	Ordering Codes
STAUFF	DIN	Thread G x L	(Standard Options)
3S	4	M10 x 30	IS-M10x30-W1
33	1	3/8–16 UNC x 1	IS-3/8-16UNCx1-W3*
40	0	M10 x 40	IS-M10x40-W1
4S	2	3/8-16 UNC x 1-3/4	IS-3/8-16UNCx1-3/4-W3*
5S	3	M10 x 50	IS-M10x50-W1
55	3	3/8-16 UNC x 2	IS-3/8-16UNCx2-W3*
6S	4	M12 x 80	ISM12x80-W1
03	4	7/16-14 UNC x 3-1/4	IS-7/16-14UNCx3-1/4-W3*

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

* Standard finishing option in North America is W3 (Carbon Steel, zinc/nickel-plated).



## M10x70 W1

AS

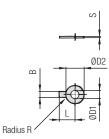
W3

W4

W5

B




#### R STALIEI

## **Safety Washer**

(for Use with Hexagon Head Bolt AS) Type SI (DIN 93)







#### Safety Washer SI (Bend longer tab down towards the side of the clamp body and one side up towards one of the flats of the hexagon head bolt)

Ordering Codes								
Safety Washe	*SI-*10.5-*DIN93-*W3							
* Safety Washer	SI							
* Exact inner diam	neter ØD1 (mm) <b>10.5</b>							
* Type of washer	Safety washer with 1 tab (according to DIN 93) DIN 93							
* Material code	Carbon Steel, zinc/nickel-plated W3							
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti) <b>W5</b>							

Group		Dimensions	6 ( ^{mm} /in)					Ordering Codes	
STAUFF	DIN	ØD1	В	ØD2	L	R	S	(Standard Options)	
3S	1	10,5	10	26	22	4	0,75	SI-10.5-DIN93-W3	
33	1	.41	.39	1.02	.87	.16	.03	3I-10.3-DIN93-W3	
4S	2	10,5	10	26	22	4	0,75	SI-10.5-DIN93-W3	
45	2	.41	.39	1.02	.87	.16	.03	51-10.5-DIN93-W3	
5S	3	10,5	10	26	22	4	0,75	SI-10.5-DIN93-W3	
55	3	.41	.39	1.02	.87	.16	.03	31-10.3-DIN93-W3	
6S	4	13	12	30	28	6	1	SI-13-DIN93-W3	
03	4	.51	.47	1.18	1.10	.24	.04	21-12-DIM22-M2	
7S	5	17	15	36	32	6	1	SI-17-DIN93-W3	
13	5	.67	.59	1.42	1.26	.24	.04	31-17-DIN93-W3	
8S	6	21	18	42	36	6	1	SI-21-DIN93-W3	
03	0	.83	.71	1.65	1.42	.24	.04	31-21-DIM93-W3	
9S	7	25	20	50	42	6	1	SI-25-DIN93-W3	
93	1	.98	.79	1.97	1.65	.24	.04	31-20-01193-193	
10S	8	31	26	63	52	10	1,6	SI-31-DIN93-W3	
103	0	1.22	1.02	2.48	2.05	.39	.06	21-21-011492-14-2	
11S	9	31	26	63	52	10	1,6	CI 21 DINO2 W2	
115	9	1.22	1.02	2.48	2.05	.39	.06	SI-31-DIN93-W3	
12S	10	31	26	63	52	10	1,6	SI-31-DIN93-W3	
123	10	1.22	1.02	2.48	2.05	.39	.06	91-91-011/099-M9	

Safety Washers, type SI are used as locking devices to prevent Hexagon Head Bolts, type AS from loosening. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

## **Safety Washer**

**Ordering Codes** 

* Exact inner diameter ØD1 (mm)

* Type of washer Safety washer with 2 tabs

* Safety Washer

* Material code

(for Use with Hexagon Head Bolt AS) Type SI (DIN 463)



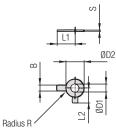
Safety Washer *SI-*10.5-*DIN463-*W3

(according to DIN 463)

Stainless Steel V4A

Carbon Steel, zinc/nickel-plated

1.4401 / 1.4571 (AISI 316 / 316 Ti)


SI

10.5

W3

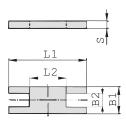
W5

**DIN 463** 



#### Safety Washer SI (Bend longer tab down towards the side of the clamp body and shorter tab up towards one of the flats of the hexagon head bolt)

Group		Dimens	ions ( ^{mm} / _{in} )						Ordering Codes
STAUFF	DIN	ØD1	В	ØD2	L1	L2	R	S	(Standard Options)
3S	1	10,5	10	21	22	13	4	0,75	SI-10.5-DIN463-W3
55	1	.41	.39	.83	.87	.51	.16	.03	3I-10.5-DIN405-W5
4S	2	10,5	10	21	22	13	4	1	SI-10.5-DIN463-W3
43	2	.41	.39	.83	.87	.51	.16	.04	3I-10.3-DIN403-W3
5S	3	10,5	10	21	22	13	4	1	SI-10.5-DIN463-W3
55	3	.41	.39	.83	.87	.51	.16	.04	3I-10.5-DIN403-W3
6S	4	13	12	24	28	15	6	1	SI-13-DIN463-W3
03	4	.51	.47	.94	1.10	.59	.24	.04	31-13-DIN403-W3
7S	5	17	15	30	32	18	6	1	SI-17-DIN463-W3
13	5	.67	.59	1.18	1.26	.71	.24	.04	3I-17-DIN403-W3
8S	6	21	18	37	36	21	6	1	SI-21-DIN463-W3
85	0	.83	.71	1.46	1.42	.83	.24	.04	5I-21-DIN403-W3
9S	7	25	20	44	42	25	6	1	SI-25-DIN463-W3
95	1	.98	.79	1.73	1.65	.98	.24	.04	5I-25-DIN403-W3
10S	8	31	26	56	52	32	10	1,6	SI-31-DIN463-W3
103	0	1.22	1.02	2.20	2.05	1.26	.39	.06	31-31-0114403-103
11S	9	31	26	56	52	32	10	1,6	SI-31-DIN463-W3
115	9	1.22	1.02	2.20	2.05	1.26	.39	.06	31-31-0111403-W3
12S	10	31	26	56	52	32	10	1,6	SI-31-DIN463-W3
125	10	1.22	1.02	2.20	2.05	1.26	.39	.06	51-51-DIN403-W3


Safety Washers, type SI are used as locking devices to prevent Hexagon Head Bolts, type AS from loosening. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.



## **Safety Locking Plate**

B

(for Use with Stacking Bolt AF) **Type SIP** 



R



Group		Dimension	1S ( ^{mm} /in)				Ordering Codes	
STAUFF	DIN	L1	L2	B1	B2	S	(Standard Options)	Ordering Codes
3S	4	57	13	30	15,2	8	SIP-3S-W2	
35	1	2.24	.51	1.18	.60	.31	5IP-35-W2	Safety Locking Plate
4S	0	70	26	30	15,2	8	SIP-4S-W2	carety rectang rate
45	2	2.76	1.02	1.18	.60	.31	SIP-45-W2	* Safety Locking Plate
F.0	0	85	40	30	15,2	8		, ,
5S	3	3.35	1.57	1.18	.60	.31	SIP-5S-W2	* STAUFF Group
<u></u>	4	116	68	45	17,2	10		* Material code Carbon Steel.
6S	4	4.57	2.68	1.77	.68	.39	SIP-6S-W2	Carbon Steel,
-0	-	153	96	60	22	10	010 70 WO	Carbon Steel,
7S	5	6.02	3.78	2.36	.87	.39	SIP-7S-W2	
	0	206	130	80	28	15		Stainless Stee
8S	6	8.11	5.12	3.15	1.10	.59	SIP-8S-W1	1.4301 / 1.430
	7	251	166	90	31	15	010 00 11/4	Stainless Stee
9S	1	9.88	6.54	3.54	1.22	.59	SIP-9S-W1	1.4401 / 1.457
100		317	205	120	49	25		
10S	8	12.48	8.07	4.72	1.93	.98	SIP-10-S-W1	

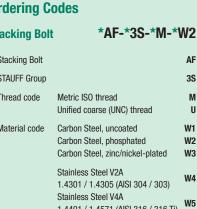
aoning o	5400	
afety Lockin	g Plate *SIP-*3S-*\	N2
Safety Locking F	Plate	SIP
STAUFF Group		3S
Material code	Carbon Steel, uncoated Carbon Steel, phosphated Carbon Steel, zinc/nickel-plated	W1 W2 W3
	Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303) Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W4 W5

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

**Stacking Bolt** 

(for Use with Safety Locking Plate SIP) **Type AF** 




Group		Dimension	IS ( ^{mm} /in)				Ordering Codes	
STAUFF	DIN	L1	L2	L3 min.	Hex	Thread G	(Standard Options)	
3S	4	49	25	15	15	M10	AF-3S-M-W2	
<b>3S</b> 1	1.93	.98	.59	.59	3/8-16 UNC	AF-3S-U-W3*		
4S	2	65	40	15	15	M10	AF-4S-M-W2	
45	2	2.56	1.57	.59	.59	3/8-16 UNC	AF-4S-U-W3*	
5S	3	77	51	15	15	M10	AF-5S-M-W2	
55	3	3.03	2.01	.59	.59	3/8-16 UNC	AF-5S-U-W3*	
6S	4	110	82	18	17	M12	AF-6S-M-W2	
05	4	4.33	3.23	.71	.67	7/16-14 UNC	AF-6S-U-W3*	
7S	5	144	110	24	22	M16	AF-7S-M-W2	
15	5	5.67	4.33	.94	.87	5/8-11 UNC	AF-7S-U-W3*	
8S	6	200	150	30	27	M20	AF-8S-M-W2	
05	0	7.87	5.91	1.18	1.06	3/4-10 UNC	AF-8S-U-W1*	
9S	7	240	180	50	30	M24	AF-9S-M-W2	
92	1	9.45	7.09	1.97	1.18	7/8-9 UNC	AF-9S-U-W1*	
10S	8	331	256	62	46	M30	AF-10S-M-W2	
105	0	13.03	10.08	2.44	1.81	1-1/8-7 UNC	AF-10S-U-W1*	

G

SW

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

* Standard finishing option for Heavy Series group sizes 3S to 7S in North America is W3 (Carbon Steel, zinc/nickel-plated). Standard finishing option for Heavy Series group sizes 8S to 10S in North America is W1 (Carbon Steel, uncoated).



1.4401 / 1.4571 (AISI 316 / 316 Ti)

#### 



# ① Type of Installation

Please select the type of installation (e.g. Weld Plates, Rail Nuts etc.) and add the corresponding Code to position ① of the order code for your clamp assembly.

Without Installation Equipment Code: none

#### Installation on Weld Plate

-	Weld Plate for Single Clamps Code: SPAL
	Weld Plate for Double Clamps Code: SPAS
-	Elongated Weld Plate for Single Clamps Code: SPAL-DUEB
10.00	Elongated Weld Plate for Double Clamps Code: SPAS-DUEB
Inotal	lation on Mounting / Channel Bail

### Installation on Mounting / Channel Rail

Mounting Rail Nut

Code: GMV (for STAUFF Group 3S to 6S only)

Channel Rail Adaptor Code: CRA (for STAUFF Group 3S to 6S only)

## (2) Group Size & Diameter

Please select the required group size and diameter and add the corresponding Code to position (2) of the order code for your clamp assembly.

Group STAUFF (DIN)	Outside Diameter P / T / H (mm)		lity of Cla aterials & Type H	•	Code
. ,	6	•	•	0	3006
	6,4	•	•	0	3006.4
	8	•	•	0	3008
	9,5	•	•	0	3009.5
	10	•	•	0	3010
	12	•	•	0	3012
3S	12,7	•	•	0	3012.7
(1)	13,5	•	•	0	3013.5
	14	•	•	0	3014
	15	•	•	0	3015
	16	•	•	0	3016
	17,2	•	•	0	3017.2
	18	•	•	0	3018
	20	•	0	0	3020

#### (2) Group Size & Diameter CONTINUATION

Group	Outside	Availabi			
	Diameter		aterials &	•	
STAUFF	P/T/H	Profiled		Ũ	
(DIN)	(mm)	Design	Type H	Type RI	Code
、 ,	6	0	0	•	4006
	8	0	0	•	4008
	10	0	0	•	4010
	12	0	0	•	4012
	12,7	0	0	•	4012.7
	14	0	0	•	4014
	15	0	0	•	4015
	16	0	0	٠	4016
40	17,2	0	0	•	4017.2
4S (2)	18	0	0	•	4018
(2)	19	•	•	•	4019
	20	•	•	0	4020
	21,3	•	•	0	4021.3
	22	•	•	0	4022
	25	•	•	0	4025
	25,4	•	•	0	4025.4
	26,9	•	•	0	4026.9
	28	•	•	0	4028
	30	٠	•	0	4030
	20	0	0	•	5020
	21,3	0	0	•	5021.3
	22	0	0	•	5022
	25	0	0	•	5025
	26,9	0	0	•	5026.9
	28	0	0	•	5028
5S	30	•	•	•	5030
(3)	32	•	•	•	5032
	33,7	•	•	0	5033.7
	35	•	•	0	5035
	38	٠	•	0	5038
	40	•	•	0	5040
	41,3	•	•	0	5041.3
	42	٠	•	0	5042
	32	0	0	•	6032
	33,7	0	0	•	6033.7
	35	0	0	•	6035
	38	•	•	0	6038
	38,7	0	0	•	6038.7
	40	0	0	•	6040
6S	42	•	•	•	6042
65 (4)	44,5	•	•	0	6044.5
(-)	45,5	0	0	•	6045.5
	48	0	0	•	6048
	48,3	•	•	0	6048.3
	50,8	•	•	0	6050.8
	51	0	0	•	6051
	53,4	0	0	•	6053.4
	54	•	0	0	6054

#### (2) Group Size & Diameter CONTINUATION

Group	Outside		lity of Cla	•	
0.7.4	Diameter		aterials &	Designs	
STAUFF	P/T/H	Profiled			
(DIN)	(mm)	Design	Туре Н	Type RI	Cod
	55	•	•	0	605
6S (4)	56,4	0	0	•	605
	57	•	•	0	605
	57,2	•	•	0	605
	60,3	•	•	0	606
	63,5	•	•	0	606
	65	•	•	0	606
	70	•	•	0	607
	55	0	0	•	705
	57	0	0	•	705
	60	0	0	•	706
	60,3	•	0	0	706
	63,5	0	0	•	706
	65	•	0	•	706
	70	•	0	•	707
7S	70	0	0	•	707
(5)	72	•	0	0	7073
	75	•	0	0	707
	76	0	0	•	707
	76,1	•	0	0	707
	80	•	0	0	707
			0	0	
	82,5	•			708
	88,9	•	0	0	708
	80	0	0	•	808
	88,9	•	0	•	808
	100	•	0	0	8100
8S	102	•	0	•	810
(6)	108	•	0	0	8108
	114	•	0	0	8114
	127	•	0	0	8127
	133	•	0	0	8133
	114	0	0	•	9114
	127	•	0	0	912
	133	•	0	•	913
9S	140	•	0	•	914
(7)	152	•	0	0	9152
	159	•	0	0	9159
	165	•	0	0	916
	168	•	0	0	9168
	150	0	0	•	101
	165	0	0	•	1016
	168	•	0	•	1016
100	172	0	0	•	1017
10S	177,8	•	0	0	1017
(8)	193,7	•	0	0	1019
	203	•	0	0	1020
	216	•	0	0	102
	219	•	0	0	102
	219	•	0	0	1121
11S	273	•	0	0	1127
(9)	324	•	0	0	1132
12S	356	•	0	0	123
(10)	406	•	0	0	1240

Standard Option



Please see pages 50 and 51 with detailed order examples for some of the most popular Heavy Series clamp assemblies.

## (3) Clamp Body Design & Material

Please select the design and material of your clamp body and add the corresponding Code to position (3) of the order code for your clamp assembly.

Please check the availability of the selected clamp body design and material according to the matrix table in (2).

#### **Profiled Design**



Please contact STAUFF for further details on fire-proof clamp body materials, tested and approved according to several international fire-protection standards.

## (4) Mounting & Fitting Combination

Please select the mounting and fitting combination (e.g. bolts, screws, cover plates etc.) and add the corresponding Code to position ④ of the order code for your clamp assembly.

#### Installation with Cover Plate and Bolts

Cover Plate for Single Clamps DPAL with Hexagon Head Bolts AS Code: DPAL-AS

Cover Plate for Double Clamps DPAS with Hexagon Head Bolts AS Code: DPAS-AS

Cover Plate for Single Clamps DPAL with Socket Cap Screws IS* Code: DPAL-IS (for STAUFF Group 3S to 6S only)

#### Installation with Locking Plate and Bolts

Safety Locking Plate SIP with Stacking Bolts AF Code: SIP-AF

#### Installation with Bolts only

Socket Cap Screws IS Code: IS

* Special lengths of Socket Cap Screws IS required. For exact lenghts, please see details of Hexagon Head Bolt, type AS

(for use with Cover Plates DPAL or DPAS) on page 45.

## **(5)** Thread Type

Please select the required thread type and add the corresponding Code to position (5) of the order code for your clamp assembly.

Metric ISO thread Code: M

Unified coarse (UNC) thread Code: U

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table.

## 6 Material & Surface Finishing

Please select the required material & surface finishing of the metal parts and add the corresponding Code to position (6) of the order code for your clamp assembly.

Metal parts made of Carbon Steel, uncoated	W1
Metal parts made of Carbon Steel, phosphated	W2
Metal parts made of Carbon Steel, zinc/nickel-plated	W3
Metal parts made of Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303)	W4
Metal parts made of Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W5
Weld Plate made of Carbon Steel, phosphated; Other metal parts made of Carbon Steel, zinc/nickel-plated	W10
Weld Plate and Cover Plate made of Carbon Steel, phosphated; Bolts made of Carbon Steel, uncoated	W12
Mounting Rail Nuts made of Carbon Steel, zinc/nickel-plated; Cover Plate made of Carbon Steel, phosphated; Bolts made of Carbon Steel, uncoated	W13
Weld Plate / Cover Plate made of Carbon Steel, phosphated; Bolts made of Carbon Steel, zinc/nickel-plated	W15
Mounting Rail Nuts made of Carbon Steel, zinc/nickel-plated; Cover Plate made of Carbon Steel, phosphated; Bolts made of Carbon Steel, zinc/nickel-plated	W16
Safety Locking Plate made of Carbon Steel, phosphated; Stacking Bolts made of Carbon Steel, zinc/nickel-plated	W17
Safety Locking Plate made of Carbon Steel, uncoated; Stacking Bolts made of Carbon Steel, phosphated	W18
Cover Plate made of Carbon Steel, phosphated; Bolts made of Carbon Steel, uncoated	W19
Individual combinations of alternative materials and s finishings are available upon request. Contact STAUF	

# ⑦ Assembling & Kitting

further information

If required, please select an additional assembling and kitting option and add the corresponding Code to the last position of the order code for your clamp assembly.

Components supplied separately Code: none (standard option)

Components assembled Code: A (special option)

Components packed in kits Code: K (special option)

# Heavy Series according to DIN 3015, Part 2



- 2x Hexagon Head Bolt Surface: W1 Thread: Metric
- 1x Cover Plate for Single Clamps Surface: W2
- 1x Clamp Body (two halves) STAUFF Group 3S (DIN 1) 0.D. 6 mm / .24 in Material: Polypropylene Profiled inside surface with tension clearance
- 1x Weld Plate for Single Clamps Surface: W2 Thread: Metric

# **Order Code**

**Order Code** 

## SPAL-3006-PP-DPAL-AS-M-W12

W12 (STAUFF Group 3S to 7S) and W1 (STAUFF Group 8S to 12S) are the standard options for this type of installation.

SPAL-DUEB-3006-PP-DPAL-AS-M-W12

W12 (STAUFF Group 3S to 7S) and W1 (STAUFF Group 8S to 12S)

are the standard options for this type of installation.



- 2x Hexagon Head Bolt Surface: W1 Thread: Metric
- 1x Cover Plate for Single Clamps Surface: W2
- 1x Clamp Body (two halves) STAUFF Group 3S (DIN 1) 0.D. 6 mm / .24 in Material: Polypropylene Profiled inside surface with tension clearance
- 1x Elongated Weld Plate for Single Clamps Surface: W2 Thread Metric

2x Socket Cap Screw

1x Clamp Body (two halves)

0.D. 6 mm / .24 in

Surface: W2

Thread: Metric

STAUFF Group 3S (DIN 1)

Material: Polypropylene

1x Weld Plate for Single Clamps

Profiled inside surface with tension clearance

Surface: W1 Thread: Metric



## **Order Code**

### SPAS-3006-PP-DPAS-AS-M-W12

W12 (STAUFF Group 3S to 7S) and W1 (STAUFF Group 8S to 12S) are the standard options for this type of installation.



- 4x Hexagon Head Bolt Surface: W1 Thread: Metric
- 1x Cover Plate for Double Clamps Surface: W2
- 2x Clamp Body (four halves) STAUFF Group 3S (DIN 1) 0.D. 6 mm / .24 in Material: Polypropylene Profiled inside surface with tension clearance
- 1x Elongated Weld Plate for Double Clamps Surface: W2 Thread: Metric

## **Order Code**

## SPAS-DUEB-3006-PP-DPAS-AS-M-W12

W12 (STAUFF Group 3S to 7S) and W1 (STAUFF Group 8S to 12S) are the standard options for this type of installation.



- 2x Socket Cap Screw Surface: W1 Thread: Metric
- 1x Clamp Body (two halves) STAUFF Group 3S (DIN 1) 0.D. 6 mm / .24 in Material: Polypropylene Profiled inside surface with tension clearance
- 1x Elongated Weld Plate for Single Clamps Surface: W2 Thread: Metric

# **Order Code** SPAL-DUEB-3006-PP-IS-M-W12

W12 is the standard option for this type of installation. Available up to STAUFF Group 6S (DIN Group 4) only.



4x Hexagon Head Bolt

Thread: Metric

1x Cover Plate for Double Clamps

2x Clamp Body (four halves)

0.D. 6 mm / .24 in

Surface: W2

Thread: Metric

STAUFF Group 3S (DIN 1)

Material: Polypropylene

1x Weld Plate for Double Clamps

Profiled inside surface with tension clearance

Surface: W1

Surface: W2

B

50



**Order Code** 

# SPAL-3006-PP-IS-M-W12

W12 is the standard option for this type of installation. Available up to STAUFF Group 6S (DIN Group 4) only.

# STAUFF



Order Code (Mounting Rail STSV not included.)

GMV-3006-PP-DPAL-AS-M-W13

W13 is the standard option for this type of installation.

Available up to STAUFF Group 6S (DIN Group 4) only.

- 2x Hexagon Head Bolt Surface: W1 Thread: Metric
- 1x Cover Plate for Single Clamps Surface: W2
- 1x **Clamp Body** (two halves) STAUFF Group 3S (DIN 1) 0.D. 6 mm / .24 in Material: Polypropylene Profiled inside surface with tension clearance
- 2x Mounting Rail Nut Surface: W3 Thread: Metric

2x Hexagon Head Bolt

1x Cover Plate for Single Clamps

Profiled inside surface with tension clearance

1x Clamp Body (two halves) STAUFF Group 3S (DIN 1)

0.D. 6 mm / .24 in Material: Polypropylene

Surface: W1 Thread: Metric

Surface: W2



## 2x Socket Cap Screw Surface: W1

Thread: Metric

- 1x **Clamp Body** (two halves) STAUFF Group 3S (DIN 1) 0.D. 6 mm / .24 in Material: Polypropylene Profiled inside surface with tension clearance
- 2x Mounting Rail Nut Surface: W3 Thread: Metric

### Order Code (Mounting Rail STSV not included.)

## GMV-3006-PP-IS-M-W13

 $\ensuremath{\textbf{W13}}$  is the standard option for this type of installation. Available up to STAUFF Group 6S (DIN Group 4) only.

## **Thread codes**

All threaded parts are available with Metric ISO thread or	
unified coarse (UNC) thread according to dimension table.	
Metric ISO thread	

Metric ISO thread	M
Unified coarse (UNC) thread	U

## **Material codes**

The below listed material codes describe the materials and surface finishings of metal parts that are most relevant for Heavy Series clamp assemblies. Individual combinations of alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Metal parts made of Carbon Steel, uncoated Metal parts made of Carbon Steel, phosphated Metal parts made of Carbon Steel, zinc/nickel-plated	W1 W2 W3
Metal parts made of Stainless Steel V2A: 1.4301 / 1.4305 (AISI 304 / 303) Metal parts made of Stainless Steel V4A: 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W4 W5
Weld Plate made of Carbon Steel, phosphated; Other metal parts made of Carbon Steel, zinc/nickel-plated	W10
Weld Plate and Cover Plate made of Carbon Steel, phosphated; Bolts made of Carbon Steel, uncoated	W12
Mounting Rails Nut made of Carbon Steel, zinc/nickel-plated; Cover Plate made of Carbon Steel, phosphated; Bolts made of Carbon Steel, uncoated	W13
Weld Plate and Cover Plate made of Carbon Steel, phosphated; Bolts made of Carbon Steel, zinc/nickel-plated	W15
Mounting Rail Nuts made of Carbon Steel, zinc/nickel-plated; Cover Plate made of Carbon Steel, phosphated; Bolts made of Carbon Steel, zinc/nickel-plated	W16
Safety Locking Plate made of Carbon Steel, phosphated; Bolts made of Carbon Steel, zinc/nickel-plated	W17
Safety Locking Plate made of Carbon Steel, uncoated; Bolts made of Carbon Steel, phosphated	W18
Cover Plate made of Carbon Steel, phosphated; Bolts made of Carbon Steel, uncoated	W19

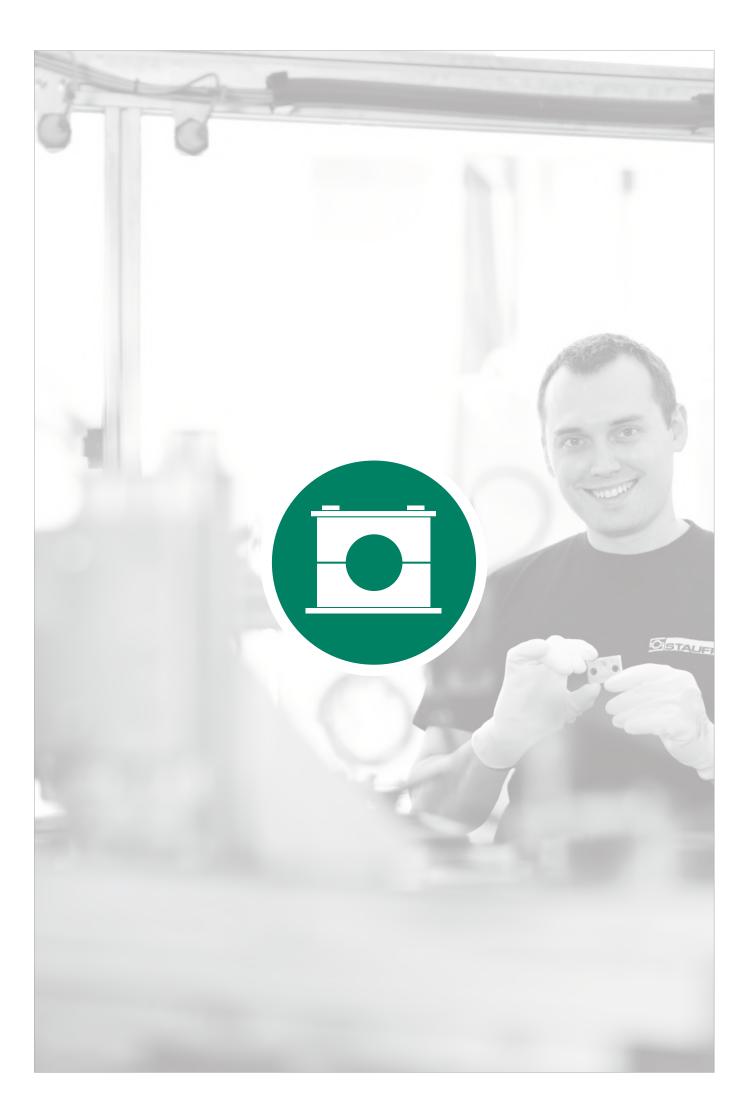
## **Order Code**

## 3006-PP-DPAL-AS-M-W19

W19 (STAUFF Group 3S to 7S) and W1 (STAUFF Group 8S to 12S) are the standard options for this type of installation.



Surface: W2 Thread: Metric


2x Stacking Bolt

- 1x Safety Locking Plate Surface: W2
- 1x **Clamp Body** (two halves) STAUFF Group 3S (DIN 1) 0.D. 6 mm / .24 in Material: Polypropylene Profiled inside surface with tension clearance

# **Order Code**

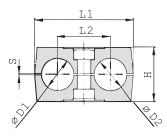
# 3006-PP-SIP-AF-M-W2

 $\rm W2$  (STAUFF Group 3S to 7S) and  $\rm W18$  (STAUFF Group 8S to 10S) are the standard options for this type of installation. Available up to STAUFF Group 10S (DIN Group 8) only.





Clamp Body Profiled Inside Surface with Tension Clearance	54	292	Single Weld Plate	55
<b>Clamp Body</b> Smooth Inside Surface without Tension Clearance	54	0 0	Group Weld Plate RAP	55
		4	Hexagon Rail Nut SM	56
			Mounting Rail	56
		Sta	Channel Rail Adaptor CRA	57
			<b>Cover Plate</b> GD	58
		1	Hexagon Head Bolt AS	58
		1	Socket Cap Screw	59
		P	Safety Locking Plate	60
			Safety Locking Plate	60
		١	Stacking Bolt	61
			Clamp Assemblies	62


## Clamp Body - Profiled Design

# Clamp Body • Type H

Profiled Inside Surface with Tension Clearance Smooth Inside Surface w/o Tension Clearance







R

STAUFF

Ordering Codes			Outside Diameter Pipe / Tube / Hose		Copper Tube	Ordering Codes (2 Clamp Halves)	Dimensions ( ^{mm} / _{in} )												
Clamp Body *1*06/06*-PP	STAUFF	DIN	Ø D1 / ( (mm)	ð D2 (in)	Pipe (in)	ASTM B88 (in)	( <b>**-*</b> = Material)	11	L2	Profileo H	l Design S min.		Widt						
			6	(11)	(,	()	106/06-**-*				0		mat						
One clamp body is consisting of two clamp halves.			6,4	1/4			106.4/06.4-**-*												
* 1st Part of STAUFF Group 1			8	5/16			108/08-**-*	36	20	27	0.6	26,5	30						
<ul> <li>* Exact outside diameters Ø D1 / Ø D2 (mm)</li> <li>* Material code (see below)</li> </ul>	1D	1	9,5	3/8		1/4	109.5/09.5-**-*	1.42		1.06	.02	1.04	1.18						
			10		1/8		110/10- <b>**-*</b>												
esigns & Standard Materials			12				112/12-**-*												
-			12,7	1/2		3/8	212.7/12.7-**-*												
Polypropylene - Profiled Design Profiled inside surface with tension clearance			13,5		1/4		213.5/13.5-**-*												
Colour: Green			14				214/14- <b>**-*</b>												
Material code: PP	2D	2	15				215/15- <b>**-*</b>	53 2.09	29 1.14	27 1.06		26							
Polypropylene • Profiled Design			16	5/8		1/2	216/16- <b>**-*</b>												
Profiled inside surface with tension clearance Colour: Black			17,2		3/8		217.2/17.2-**-*												
Material code: <b>PP-BK</b>			18				218/18- <b>**-*</b>												
Polypropylene = Type H			19	3/4			319/19- <b>**-*</b>												
Smooth inside surface without tension clearance		3				20				320/20- <b>**-*</b>									
Colour: Green Material code: <b>PP-H</b>	3D		21,3		1/2		321.3/21.3-**-*	67	36	37	0,7	36,5	30						
	30		5	0	5	0	0	0	22	7/8		3/4	322/22- <b>**-*</b>	2.64	1.42	1.46	.03	1.44	1.18
Polypropylene - Type H Smooth inside surface without tension clearance										25				325/25- <b>**-*</b>					
Colour: Black			25,4	1			325.4/25.4- <b>**</b> - <b>*</b>												
Material code: PP-H-BK			26,9		3/4		426.9/26.9- <b>**</b> - <b>*</b>												
Polyamide - Profiled Design	4D	4	28				428/28- <b>**-*</b>	80 3.15	45 1.77	40	0,7 .03	38 1.46	30 1.18						
Profiled inside surface with tension clearance Colour: Black			30				430/30- <b>**-*</b>												
Material code: PA			32	1-1/4			532/32- <b>**-*</b>												
Polyamide = Type H			33,7		1		533.7/33.7- <b>**-*</b>												
Smooth inside surface without tension clearance	5D	5	35			1-1/4	535/35- <b>**-*</b>	106	56	53	0,7	52	30						
Colour: Black Material code: <b>PA-H</b>	50	5	38	1-1/2			538/38- <b>**-*</b>	4.17	2.20	2.09	.03	2.04	1.18						
			40				540/40- <b>**-*</b>												
ee pages 154 / 155 for properties and technical information.			42		1-1/4		542/42-**-*												

Additional outside diameters and combinations of different outside diameters are available upon request. Please contact STAUFF for further information.

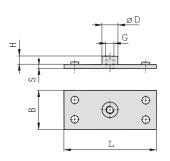
of hoses and cables

Please contact STAUFF for further details on fire-proof

clamp body materials, tested and approved according to several international fire-protection standards (such as BS 6853, EN 45545-2, UL 94 and many more).

· Proven, tested and trusted product in various markets Profiled design recommended for the safe installation of rigid pipes and tubes; type H recommended for the safe installation

· Available for all commonly used pipe and tube outside diameters Environmental protection due to vibration/noise reducing design Excellent weathering resistance, even under extreme conditions


See pages 156 / 157 for material properties

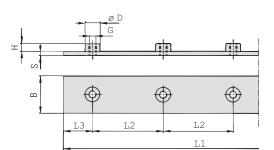
and technical information. **Product Features** 



#### R STALIE

# **Single Weld Plate** Type SP






Group		Dimensi	ons ( ^{mm} /in)					Ordering Codes	
STAUFF	DIN	L	В	S	Н	ØD	Thread G	(Standard Options)	Ordering Co
10	4	37	30	3	6,5	12	M6	SP-1D-M-W2	
1D	1	1.46	1.18	.12	.26	.47	1/4-20 UNC	SP-1D-U-W2	Weld Plate
2D	2	55	30	5	6	14	M8	SP-2D-M-W2	* Single Weld Plate
20	2	2.17	1.18	.20	.24	.55	5/16-18 UNC	SP-2D-U-W2	* STAUFF Group
0.D	0	70	30	5	6	14	M8	SP-3D-M-W2	* Thread code
3D	3	2.76	1.18	.20	.24	.55	5/16-18 UNC	SP-3D-U-W2	
4D		85	30	5	6	14	M8	SP-4D-M-W2	* Material code
4U	4	3.35	1.18	.20	.24	.55	5/16-18 UNC	SP-4D-U-W2	
5D	5	110	30	5	6	14	M8	SP-5D-M-W2	
อม	5	4.33	1.18	.20	.24	.55	5/16-18 UNC	SP-5D-U-W2	

Ordering Codes								
Weld Plate	*SP-*1D-*M-*\	N2						
* Single Weld Plate	9	SP						
* STAUFF Group		1D						
* Thread code	Metric ISO thread Unified coarse (UNC) thread	M U						
* Material code	Carbon Steel, phosphated Carbon Steel, zinc/nickel-plated	W2 W3						
	Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303)	W4						
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W5						

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

**Group Weld Plate** for 5 Clamp Bodies **Type RAP** 



Group	oup Dimensions ( ^{mm} / _{in} ) Ordering C								Ordering Codes			
STAUFF	DIN	L1	L2	L3	В	S	Н	ØD	Thread G	(Standard Options)	Ordering C	odes
1D	1	196	40	18	30	3	6,5	12	M6	RAP-1D-40-5-M-W1	Wald Dista	
ID		7.72	1.57	.71	1.18	.12	.26	.47	1/4-20 UNC	RAP-1D-40-5-U-W1	Weld Plate	*RAP
2D	2	288	58	28	30	5	6	14	M8	RAP-2D-58-5-M-W1	* Group Weld Plat	te
20	2	11.34	2.28	1.10	1.18	.20	.24	.55	5/16-18 UNC	RAP-2D-58-5-U-W1	* STAUFF Group	
3D	3	358	72	35	30	5	6	14	M8	RAP-3D-72-5-M-W1	* Pipe Center Spa	icing L2 (I
30	3	14.09	2.83	1.37	1.18	.20	.24	.55	5/16-18 UNC	RAP-3D-72-5-U-W1	* Number of Clarr	nps
4D	4	444	90	42	30	5	6	14	M8	RAP-4D-90-5-M-W1	* Thread code	Metric I
4D	4	17.48	3.54	1.65	1.18	.20	.24	.55	5/16-18 UNC	RAP-4D-90-5-U-W1		Unified
5D	5	558	112	55	30	5	6	14	M8	RAP-5D-112-5-M-W1	* Material code	Carbon Carbon
עכ		21.97	4.41	2.16	1.18	.20	.24	.55	5/16-18 UNC	RAP-5D-112-5-U-W1		Carbon

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

-		
	ľ	

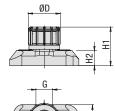
Weld Plate	*RAP-*1D-*40-*5-*M-*	W1				
* Group Weld Plat	е	RAP				
* STAUFF Group		1D				
* Pipe Center Spa	cing L2 (mm)	40				
* Number of Clamps						
* Thread code	Metric ISO thread Unified coarse (UNC) thread	M U				
* Material code	Carbon Steel, uncoated Carbon Steel, phosphated Carbon Steel, zinc/nickel-plated Stainless Steel V2A	W1 W2 W3				
	1.4301 / 1.4305 (AISI 304 / 303) Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W4 W5				

#### R STAUF

## **Hexagon Rail Nut**

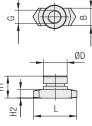
(for Use with Mounting Rail TS) Type SM






# C

STAUFF Group 1D


STAUFF Group 2D to 5D

Ordering Codes							
Hexagon Rail Nut *SM-*1-8/1D-*M-*W3							
* Hexagon Rail Nu	t	SM					
* STAUFF Group	1D (DIN Group 1) 2D to 5D (DIN Group 2 to 5)	1-8/1D 2-5D					
* Thread code	Metric ISO thread Unified coarse (UNC) thread	M U					
* Material code	Carbon Steel, zinc/nickel-plated	W3					
	Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303)	W4					
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316	<b>W5</b> Ti)					



STAUFF Group 1D





STAUFF Group 2D to 5D

Group		Dimensions (m	ⁿ /in)					Ordering Codes
STAUFF	DIN	Thread G	L	В	H1	H2	ØD	(Standard Options)
1D	1	M6	25,5	10,4	14,2	5,5	12	SM-1-8/1D-M-W3
ID		1/4-20 UNC	1.00	.41	.56	.22	.47	SM-1-8/1D-U-W3
2D	2			10.4	13			
3D	3	M8	25,5			5	14	SM-2-5D-M-W3
4D	4	5/16-18 UNC	1.00 .	.41	.51	.20	20 .55	SM-2-5D-U-W3
5D	5							

The Hexagon Rail Nut, type SM-1-8/1D is also suitable for Standard Series, STAUFF Group 1 to 8.

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

## **Mounting Rail**

(for Use with Hexagon Rail Nut SM) Type TS



1 1

4D

5D

4

5







**Mounting Rail TS-30** 

Ordering Codes							
Mounting Rai	il *TS-*11-*1M-*V	V1					
* Mounting Rail		TS					
* Height of rail	11 mm / .43 in 14 mm / .55 in 30 mm / 1.18 in	11 14 30					
* Length of rail	1 m / 3.28 ft 2 m / 6.56 ft	1M 2M					
	Alternative lengths available upon required Contact STAUFF for further information						
* Material code	Carbon Steel, uncoated Carbon Steel, hot-dip galvanised	W1 N98					
	Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303) Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W4 W5					

I	Mounting	y Rail TS-11		Mounting Rail TS-14				
Group STAUFF DIN		Dimensions ( ^{mm} / _{in} ) B1 B2		S	Ordering Codes (Standard Length of Rail: 1 m / 3.28ft			
1D	1				Height 11 mm / .43 in <b>TS-11-1M-W1</b>			
2D	2							
3D	3	<u>28</u> 1.10	11 .43	2.08	Height 14 mm / .55 in <b>TS-14-1M-W1</b>			

Dimensions (m	n/in)		Ordering Codes (Standard Options)		
B1	B2	S	Length of Rail: 1 m / 3.28ft	Length of Rail: 2m / 6.56ft	
			Height 11 mm / .43 in <b>TS-11-1M-W1</b>	Height 11 mm / .43 in <b>TS-11-2M-W1</b>	
<u>28</u> 1.10	<u>11</u> .43	2	Height 14mm / .55 in <b>TS-14-1M-W1</b>	Height 14 mm / .55 in <b>TS-14-2M-W1</b>	
			Height 30 mm / 1.18 in TS-30-1M-W1	Height 30 mm / 1.18 in TS-30-2M-W1	

Mounting Rails, type TS-11/14/30 are suitable for all Twin Series and Standard Series group sizes.

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Dimensional drawings: All dimensions in mm (in).



# Channel Rail Adaptor

(for Use with Various Channel Rails) Type CRA



	L3	

 $\bigcirc$ 

STAUFF Group 1D

**FALI** 

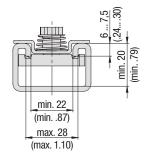
STAUFF Group 2-3D / 4-5D

Group		Dimensions ( ^{mm} / _{in} )								Ordering Codes	
STAUFF	DIN	Thread G	L1	L2	L3	B1	B2	H1	H2	H3	(Standard Options)
1D	1	M6	21	35	40	16	19	6	5,5	20,5	CRA-1-8/1D-M-W3
ID	1	1/4-20 UNC	.83	1.38	1.57	.63	.75	.24	.22	.81	CRA-1-8/1D-U-W3
2D	2	M8	21	35	38	53	19	9	5,5	23,5	CRA-2-3D-M-W3
3D	3	5/16-18 UNC	.83	1.38	1.50	2.09	.75	.35	.22	.93	CRA-2-3D-U-W3
4D	4	M8	21	35	38	80	19	9	5,5	23,5	CRA-4-5D-M-W3
5D	5	5/16-18 UNC	.83	1.38	1.50	3.15	.75	.3	.22	.93	CRA-4-5D-U-W3

Ordering Codes					
Adaptor	*CRA-*1-8/1D-*M	-*W3			
* Channel Rail Ada	aptor	CRA			
* STAUFF Group	1D (DIN Group 1) 2D to 3D (DIN Group 2 to 3) 4D to 5D (DIN Group 4 to 5)	1-8/1D 2-3D 4-5D			
* Thread code	Metric ISO thread Unified coarse (UNC) thread	M U			
* Material code	Carbon Steel, zinc/nickel-plated	W3			
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316	Ti) <b>W5</b>			

The Channel Rail Adaptor, type CRA 1-8/1D is also suitable for Standard Series, STAUFF Group 1 to 8.

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.



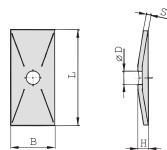

#### **Compatibility with Channel Rails**

The STAUFF Channel Rail Adaptor, type CRA, is suitable for various channel rails, including the following types:

HALFEN	HILTI	UNISTRUT®	STAUFF (Cushion Clamp Series)
HM 41/41	MQ-21, MQ-41, MQ-52, MQ-72	P1000, P1000T, P1000V, P1000VT, P1001	SCS-048-1-PL, SCS-048-1-GR
HZA 41/22	MQ-21U, MQ-41U, MQ-72U	P2000, P2000T	SCS-120-1-PL, SCS-120-1-GR
HZM 41/41	MQ-21D, MQ-41D, MQ-52-72D	P3003, P3003T, P3300V, P3300VT, P3301	See page 149 for technical information.
HZM 41/22		P4000, P4000T	
HL 41/41, HL 41/B2		P5000, P5000T, P5001, P5500, P5500T, P5501	

Contact STAUFF to check compatibility with additional types of channel rails.




Basic dimensional requirements for channel rails to be used with STAUFF Channel Rail Adaptors, type CRA

Dimensional drawings: All dimensions in mm (in).



#### 

# Cover Plate Type GD





#### **Ordering Codes** *GD-*1D-*W3 **Cover Plate** * Cover Plate GD * STAUFF Group 1D * Material code Carbon Steel, zinc/nickel-plated W3 Stainless Steel V2A W4 1.4301 / 1.4305 (AISI 304 / 303) Stainless Steel V4A W5 1.4401 / 1.4571 (AISI 316 / 316 Ti)

Group		Dimensions ("	Ordering Codes				
STAUFF	DIN	L	В	Н	S	ØD	(Standard Options)
1D	1	34	30	7	3	7	GD-1D-W3
ID	1	1.34	1.18	.28	.12	.28	dD-1D-w3
2D	2	52	30	7	3	9	GD-2D-W3
20	2	2.05	1.18	.28	.12	.35	GD-2D-W3
3D	3	65	30	7	3	9	GD-3D-W3
30	3	2.56	1.18	.28	.12	.35	GD-3D-W3
40	4	79	30	7	3	9	
4D	4	3.11	1.18	.28	.12	.35	GD-4D-W3
50	F	102	30	7	3	9	GD-5D-W3
5D	5	4.02	1.18	.28	.12	.35	GD-9D-W3

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

# Hexagon Head Bolt Type AS

**Ordering Codes** 

**Hexagon Head Bolt** 

* Type of bolt

* Material code



Hexagon Head Bolt (according to DIN 931 / 933

Stainless Steel V2A

 $\star$  Thread type and size acc. to dimension table

or ANSI / ASME B18.2.1.)

Carbon Steel, zinc/nickel-plated

1.4301 / 1.4305 (AISI 304 / 303) Stainless Steel V4A

1.4401 / 1.4571 (AISI 316 / 316 Ti)

*AS-*M8x35-*W3

AS

W3

W4

W5

M8x35

	i	Á
	П	. 7
	i	
	Т	
_	G	
-	-	

ı

#### Hexagon Head Bolt AS (according to DIN 931 / 933 or ANSI / ASME B18.2.1.) Dimensions applicable only when used with Cover Plate GD

	Group STAUFF	DIN	Dimensions ("""/n) Thread G x L	Ordering Codes (Standard Options)
	1D	1	M6 x 35	AS-M6x35-W3
2	ID	1	1/4-20 UNC x 1-3/8	AS-1/4-20UNCx1-3/8-W3
	2D	2	M8 x 35	AS-M8x35-W3
S	20	2	5/16-18 UNC x 1-3/8	AS-5/16-18UNCx1-3/8-W3
5	3D	3	M8 x 45	AS-M8x45-W3
3	30	3	5/16-18 UNC x 1-3/4	AS-5/16-18UNCx1-3/4-W3
	4D	4	M8 x 50	AS-M8x50-W3
4	40	4	5/16–18 UNC x 2	AS-5/16-18UNCx2-W3
5	5D	5	M8 x 60	AS-M8x60-W3
	อม	Э	5/16-18 UNC x 2-1/2	AS-5/16-18UNCx2-1/2-W3

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

# STAUFF

Group STAUFF DIN

1

2

3

4

5

1D

2D

3D

4D

5D

Dimensions (^{mm}/_{in}) Thread G x L M6 x 35

1/4-20 UNC x 1-3/8

5/16-18 UNC x 1-3/8

5/16-18 UNC x 1-3/4

5/16–18 UNC x 2 M8 x 60

5/16-18 UNC x 2-1/2

M8 x 35

M8 x 45

M8 x 50

# Socket Cap Screw Type IS



Socket Cap Screw IS (according to ISO 4762 or ANSI / ASME B18.3) Dimensions applicable only when used with Cover Plate GD

G

Ordering Codes (Standard Options) IS-M6x35-W3 IS-1/4-20UNCx1-3/8-W3	Ordering Codes Socket Cap Screw *IS-*M8x35-*W3
IS-M8x35-W3 IS-5/16-18UNCx1-3/8-W3	* Type of bolt Socket Cap Screw (according to ISO 4762 IS or ANSI / ASME B18.3)
IS-M8x45-W3 IS-5/16-18UNCx1-3/4-W3	* Thread type and size acc. to dimension table     M8x35     * Material code Carbon Steel, zinc/nickel-plated     W3
IS-M8x50-W3 IS-5/16-18UNCx2-W3	Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303) W4
IS-M8x60-W3 IS-5/16-18UNCx2-1/2-W3	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti) <b>W5</b>

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.





## **Safety Locking Plate**

C

Type SI (for Use with Stacking Bolt AF)





Safety Locking Plate SI (Prevents Stacking Bolt from Loosening)

Ordering Codes							
Safety Locking Plate *SI-*1D-*W3							
* Safety Locking	Plate	SI	2				
* STAUFF Group	1D (DIN Group 1) 2D to 5D (DIN Group 2 to 5)	1D 2-5D	2				
* Material code	Carbon Steel, zinc/nickel-plated	W3	3				
	Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303)	W4	4				
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W5					
	, , ,		5				

Group		Dimensions ( ^{mm} / _{in} ) Ordering Codes				
STAUFF	DIN	L	B1	B2	S	(Standard Options)
1D	1	27	22	11,2	0,5	SI-1D-W3
10	1	1.06	.86	.44	.02	31-10-w3
2D	2					
3D	3	27	22	12,2	0,5	SI-2-5D-W3
4D	4	1.06	.86	.48	.02	31-2-30-103
5D	5					

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

# Safety Locking Plate

**Ordering Codes** 

Safety Locking Plate * Safety Locking Plate

* STAUFF Group 1D (DIN Group 1)

**Type SIV** (for Use with Stacking Bolt AF)



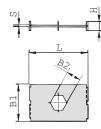
2D to 3D (DIN Group 2 to 3)

1.4401 / 1.4571 (AISI 316 / 316 Ti)

* Material code Carbon Steel, zinc/nickel-plated

Stainless Steel V4A

*SIV-*1D-*W3


SIV

1D

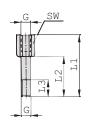
W3

W5

2-3D



Safety Locking Plate SIV (Prevents Stacking Bolt from Loosening and Upper Clamp from Turning)


Group		Dimensions ( ^{mm} / _{in} ) Ordering Codes					Ordering Codes
STAUFF	DIN	L	B1	B2	S	Н	(Standard Options)
1D	1	27	28	11,1	1	7	SIV-1D-W3
ID	1	1.06	1.10	.44	.04	.27	SIV-ID-W3
2D	2	45	28	12,1	1	7	CIV A AD WA
3D	3	1.77	1.10	.48	.04	.27	SIV-2-3D-W3

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

# STAUFF

# **Stacking Bolt**

(for Use with Safety Locking Plates SI / SIV) Type AF





roup		Dimensions ( ^m	^m /in)				Ordering Codes		
TAUFF	DIN	Thread G	L1	L2	L3 min.	Hex	(Standard Options)	Ordering C	odes
)	-	M6	34	20	12	11	AF-1/1A/1D-M-W3		
,	I	1/4-20 UNC	1.33	.78	.47	.43	AF-1/1A/1D-U-W3	Stacking Bolt	^AF-^1/1
	0	M8	33	20	12	12	AF-2D-M-W3	* Stacking Bolt	
	2	5/16-18 UNC	1.30	.78	.47	.47	AF-2D-U-W3	* STAUFF Group	
		M8	44	29	12	12	AF-3D-M-W3	* Thread code	Metric ISO threa
	3	5/16-18 UNC	1.73	1.14	.47	.47	AF-3D-U-W3		Unified coarse (
		M8	49	34	12	12	AF-4D-M-W3	* Material code	Carbon Steel, zi
	4	5/16-18 UNC	1.92	1.33	.47	.47	AF-4D-U-W3		Stainless Steel 1.4301 / 1.4305
	_	M8	61	46	12	12	AF-5D-M-W3		Stainless Steel
	5	5/16-18 UNC	2.40	1.81	.47	.47	AF-5D-U-W3		1.4401 / 1.457

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

#### ര TALIF



Please see page 63 with detailed order examples for some of the most popular Twin Series clamp assemblies.

# 1 Type of Installation

C

Please select the type of installation (e.g. weld plates, rail nuts, etc.) and add the corresponding Code to position ① of the order code for your clamp assembly.

Without Installation Equipment Code: none

#### **Installation on Weld Plate**



Code: RAP

#### Installation on Mounting / Channel Rail

**Mounting Rail Nut** <u>e</u>, Code: SM

2 a

**Channel Rail Adaptor** Code: CRA

# **(2)** Group Size & Diameters

Please select the required group size and diameter and add the corresponding Code to position 2 of the order code for your clamp assembly.

Group	Outside	Availability			
	Diameter	Body Materia	Body Materials & Designs		
STAUFF	P/T/H	Profiled	Туре		
(DIN)	(mm)	Design	Н	Code	
	6	٠	•	106/06	
	6,4	•	•	106.4/06.4	
1D	8	٠	•	108/08	
(1)	9,5	٠	•	109.5/09.5	
	10	٠	•	110/10	
	12	٠	•	112/12	
	12,7	٠	•	212.7/12.7	
	13,5	٠	•	213.5/13.5	
0.0	14	٠	•	214/14	
2D (2)	15	٠	•	215/15	
(2)	16	٠	•	216/16	
	17,2	•	•	217.2/17.2	
	18	•	•	218/18	
	19	٠	•	319/19	
	20	•	•	320/20	
3D	21,3	٠	•	321.3/21.3	
(3)	22	•	•	322/22	
	25	•	•	325/25	
	25,4	•	•	325.4/25.4	
4D	26,9	•	•	426.9/26.9	
4D (4)	28	•	•	428/28	
(4)	30	•	•	430/30	
	32	•	•	532/32	
	33,7	•	•	533.7/33.7	
5D	35	•	•	535/35	
(5)	38	•	•	538/38	
	40	٠	•	540/40	
	42	•	•	542/42	

# **(3) Clamp Body Design & Material**

Please select the design and material of your clamp body and add the corresponding Code to position 3 of the order code for your clamp assembly.

Please check the availability of the selected clamp body design and material according to the matrix table in (2).

#### **Profiled Design**





Polypropylene (Colour: Black) Code: PP-BK

Polyamide Code: PA

#### Type H (Smooth)



Polypropylene (Colour: Black) Code: PP-H-BK



See pages 154 / 155 for material properties and technical information.

Please contact STAUFF for further details on fire-proof clamp body materials, tested and approved according to several international fire-protection standards.

## 4 Mounting & Fitting Combination

Please select the mounting and fitting combination (e.g. Bolts, Cover Plates, etc. ) and add the corresponding Code to position ④ of the order code for your clamp assembly.

#### Installation with Cover Plate and Bolt

Cover Plate GD with **Hexagon Head Bolt AS** Code: GD-AS

Cover Plate GD with Socket Cap Screw IS Code: GD-IS

#### Installation with Locking Plate and Bolt

Safety Locking Plate SI with Stacking Bolt AF Code: SI-AF

Safety Locking Plate SIV with **Stacking Bolt AF** Code: SIV-AF (for STAUFF Group 1D to 3D only)

## (5) Thread Type

Please select the required thread type and add the corresponding Code to position (5) of the order code for your clamp assembly.

Metric ISO thread Code: M

Unified coarse (UNC) thread Code: U

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table.

# 6 Material & Surface Finishing

Please select the required material & surface finishing of the metal parts and add the corresponding Code to position (6) of the order code for your clamp assembly.

Metal parts made of Carbon Steel, zinc/nickel-plated W3

Metal parts made of Stainless Steel V2A W4 1.4301 / 1.4305 (AISI 304 / 303)

Metal parts made of Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)

Weld Plate made of Carbon Steel, phosphated; Other W10 metal parts made of Carbon Steel, zinc/nickel-plated

W5

Individual combinations of alternative materials and surface finishings are available upon request. Contact STAUFF for further information

## **7** Assembling & Kitting

If required, please select an additional assembling and kitting option and add the corresponding Code to the last position of the order code for your clamp assembly.

**Components supplied separately** Code: none (standard option)

**Components assembled** Code: A (special option)

Components packed in kits Code: K (special option)





1x Hexagon Head Bolt Surface: W3 Thread: Metric

> 1x Cover Plate Surface: W3

- 1x Clamp Body (two halves) STAUFF Group 1D (DIN 1) both 0.D. 6 mm / .24 in Material: Polypropylene Profiled inside surface with tension clearance
- 1x Weld Plate Surface: W2 Thread: Metric

## **Order Code**

## SP-106/06-PP-GD-AS-M-W10

W10 is the standard option for this type of installation.



- 1x Stacking Bolt Surface: W3 Thread: Metric
- 1x Safety Locking Plate (Type SI) Surface: W3 Thread: Metric
- 1x Clamp Body (two halves) STAUFF Group 1D (DIN 1) both 0.D. 6 mm / .24 in Material: Polypropylene Profiled inside surface with tension clearance

# **Order Code**

## 106/06-PP-SI-AF-M-W3

W3 is the standard option for this type of installation.



- 1x Hexagon Head Bolt Surface: W3 Thread: Metric
- 1x Cover Plate Surface: W3
- 1x Clamp Body (two halves) STAUFF Group 1D (DIN 1) both 0.D. 6 mm / .24 in Material: Polypropylene Profiled inside surface with tension clearance
- 1x Hexagon Rail Nut Surface: W3 Thread: Metric

## Order Code (Mounting Rail TS not included.)

# SM-106/06-PP-GD-AS-M-W3

W3 is the standard option for this type of installation.



# 1x Hexagon Head Bolt

Surface: W3 Thread: Metric

1x Cover Plate Surface: W3

1x Clamp Body (two halves) STAUFF Group 1D (DIN 1) both 0.D. 6 mm / .24 in Material: Polypropylene Profiled inside surface with tension clearance

# **Order Code**

# 106/06-PP-GD-AS-M-W3

W3 is the standard option for this type of installation.



- 1x Stacking Bolt Surface: W3 Thread: Metric
- 1x Safety Locking Plate (Type SIV) Surface: W3 Thread: Metric
- 1x Clamp Body (two halves) STAUFF Group 1D (DIN 1) both 0.D. 6 mm / .24 in Material: Polypropylene Profiled inside surface with tension clearance

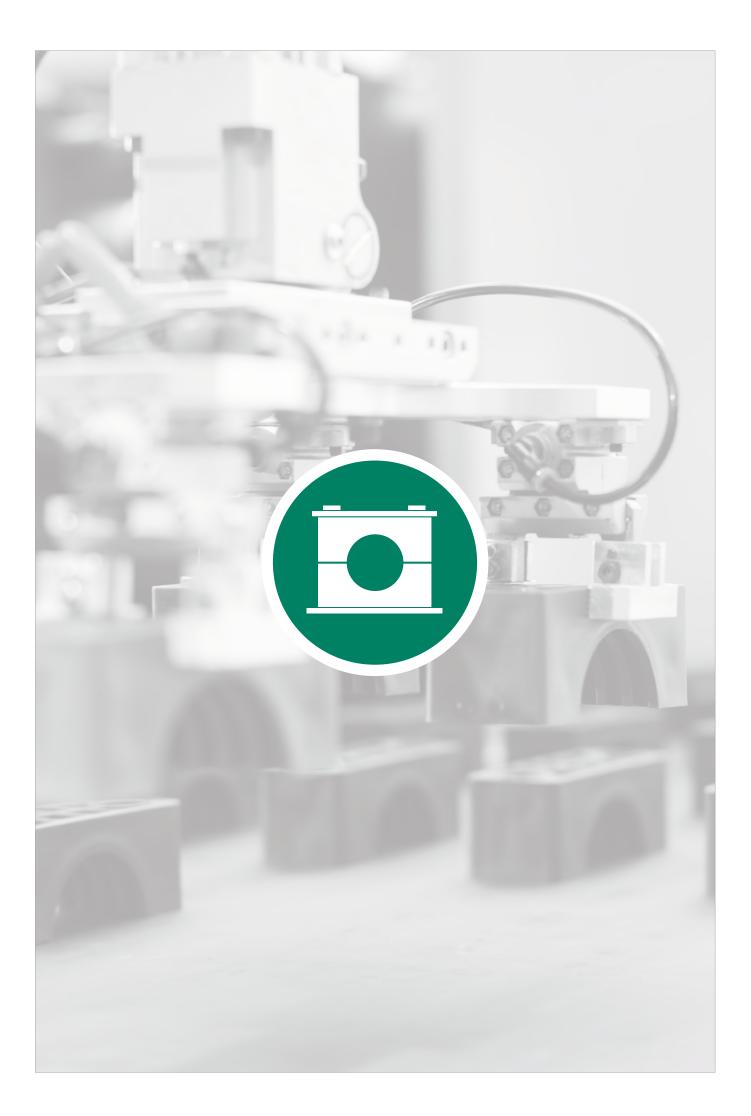
# **Order Code**

## 106/06-PP-SIV-AF-M-W3

W3 is the standard option for this type of installation. This type of installation is available up to STAUFF Group 3D only.

# **Thread Codes**

A


All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table.	
Metric ISO thread	M
Unified coarse (UNC) thread	U

# **Material Codes**

The below listed material codes describe the materials and surface finishings of metal parts that are most relevant for Twin Series clamp assemblies. Individual combinations of alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

Metal parts made of Carbon Steel, zinc/nickel-plated	W3
Metal parts made of Stainless Steel V2A: 1.4301 / 1.4305 (AISI 304 / 303) Metal parts made of Stainless Steel V4A: 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W4 W5
Weld Plate made of Carbon Steel, phosphated Other metal parts made of Carbon Steel, zinc/nickel-plated	W10

C





00	Clamp Body Profiled Inside Surface with Tension Clearance	66
00	Clamp Body with Elastomer Inserts	66
	Weld Plate SPAD	67
	Cover Plate	67
1	Hexagon Head Bolt AS	68
8	<b>Mounting Rail Nut</b> GMV	68
	Mounting Rail STSV	68
and the	Channel Rail Adaptor CRA	68
٩	Socket Cap Screw	68
	Safety Locking Plate	68
١	Stacking Bolt AF	68
	Clamp Assemblies	69

CI.

Ru-



#### R STAUFF

# Clamp Body - Profiled Design

## **Profiled Inside Surface with Tension Clearance**



# D

CI	ar	np	В	00

One

mp Body	*4*012.7/12.7-*PP
clamp body is consistin	ng of two clamp halves.

4

* 1st part of STAUFF Group

**Ordering Codes** 

* Exact outside diameters Ø D1 / Ø D2 (mm) 012.7/12.7 * Material code (see below) PP

### **Standard Materials**

1

Material code: PP Polyamide

Polypropylene

Colour: Green

Colour: Black Material code: PA

See pages 154 / 155 for material properties and technical information.

# **Clamp Body with Elastomer Inserts** Type RI



Ordering Codes	
Clamp Assembly	*4*006/06-*PP-R
One assembly is consisting of	one clamp body and two inserts.
<ul> <li>★ 1st part of STAUFF Group</li> <li>★ Exact outside diameters Ø</li> <li>★ Material code (see below)</li> </ul>	. ,
Standard Materials	
Colour: Black	Polyamide Colour: Black

Material code: PP-R

Flastomer Inserts

		øD_/	), )	12					
use with E	Elastomer Inserts	s of the Heavy Series, S	TAUFF Gro	up 4S and	5S (see p	age 39 for	details)		
side Diame	eter	Ordering Codes	Dimensions						
e / Tube / Hose I / Ø D2		(Clamp Assembly)	( ^{mm} / _{in} )						
ı)	(in)	( <b>**</b> R = Material)	ØD	L1	L2	L3	H1		
		4006/06- <b>**</b> -R							
	5/16	4008/08- <b>**</b> -R							
		4010/10- <b>**</b> -R							
		4012/12- <b>**</b> -R							
'	1/2	4012.7/12.7- <b>**</b> -R	25	115	90	45	48		
		4014/14- <b>**</b> -R	.98	4.53	3.54	1.77	1.89		
		4015/15- <b>**</b> -R	.90	4.05	3.04	1.77	1.09		
	5/8	4016/16- <b>**</b> -R							
		4017.2/17.2- <b>**</b> -R							
		4018/18- <b>**</b> -R							
	3/4	4019/19- <b>**</b> -R							
		5020/20- <b>**</b> -R							
}		5021.3/21.3- <b>**</b> -R							
	7/8	5022/22- <b>**</b> -R							

38

1.50

145

5.71

120

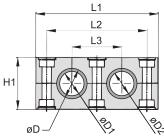
4.72

60

2.36

60

2.36


	20
Thermoplastic Elastomer (73 Shore-A)	30
Colour: Black	32

Material code: PA-R

L1 L2 L3 H1

Group	Outside Pipe / T	Diameter ube	Nomina	l Bore Copper Tube	Ordering Codes (2 Clamp Halves)	Dimensions ( ^{mm} /in)					
	Ø D1 / Ø	) D2	Pipe	ASTM B88							
STAUFF	(mm)	(in)	(in)	(in)	(** = Material)	L1	L2	L3	H1	S	Width
	12,7	1/2		3/8	4012.7/12.7-**			45	48	1,2	
	19	3/4			4019/19- <b>**</b>						
	20				4020/20-**		00				00
4S-D	21,3		1/2		4021.3/21.3-**		90 3.54				30
	22			3/4	4022/22-**	4.00	5.04	1.77	1.09	.05	1.10
	25,4	1			4025.4/25.4-**						
	26,9		3/4		4026.9/26.9-**	1					
	32	1-1/4			5032/32-**						
50 D	33,7		1		5033.7/33.7- <b>**</b>	145	120	60	60	2,0	30
5S-D	38	1-1/2			5038/38- <b>**</b>	5.71	4.72	2.36	2.36	.08	1.18
	42		1-1/4		5042/42- <b>**</b>						

Additional outside diameters and Clamp Bodies, type H (smooth inside surface without tension clearance) are available upon request. Please contact STAUFF for further information.



See pages 154 / 155 for properties and technical information. Additional outside diameters are available upon request. Please contact STAUFF for further information.

1-1/4

Group

STAUFF

4S-D

5S-D

Outs Pipe Ø D1

(mm)

12,7

14

15 16 17,2

25

26,9

28

5025/25-**-R

5028/28-**-R

5030/30-******-R

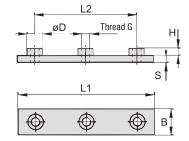
5032/32-**-R

5026.9/26.9-******-R



Width

30


30

1.18

1.18

#### 

# Weld Plate Type SPAD





Group	oup Dimensions ( ^{mm} / _{in} )						Ordering Codes	
STAUFF	L1	L2	В	S	Н	Thread G	ØD	(Standard Options)
46 D	130	90	30	8	8,5	M10	18	SPAD-4S-M-W1
4S-D	5.12	3.54	1.18	.31	.33	3/8-16 UNC	.71	SPAD-4S-U-W2*
5S-D	160	120	30	8	8,5	M10	18	SPAD-5S-M-W1
	6.30	4.72	1.18	.31	.33	3/8-16 UNC	.71	SPAD-5S-U-W2*

All threaded parts are available with Metric ISO thread or unified Coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

* Standard finishing option in North America is W2 (Carbon Steel, phosphated).

Ordering Codes Weld Plate *SPAD-*4S-*M-*W1							
* Weld Plate	S	SPAD					
* STAUFF Group	4S-D 5S-D	4S 5S					
* Thread code	Metric ISO thread Unified coarse (UNC) thread	M U					
* Material code	Carbon Steel, uncoated Carbon Steel, phosphated Carbon Steel, zinc/nickel-plated Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303) Stainless Steel V4A	W1 W2 W3 W4					
	1.4401 / 1.4571 (AISI 316 / 316 Ti)	W5					

Cover Plate Type DPAD



Group	Dimension	1S ( ^{mm} /in)				Ordering Codes
STAUFF	L1	L2	В	S	ØD	(Standard Options)
40	115	90	30	8	11	
4S	4.53	3.54	1.18	.31	.43	DPAD-4S-W1*
50	145	120	30	8	11	
5S	5.71	4.72	1.18	.31	.43	DPAD-5S-W1*

L2

TİT

L1

φ

st

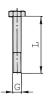
в

Φ

øD

 $\Phi$ 

All threaded parts are available with Metric ISO thread or unified Coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.


* Standard finishing option in North America is W3 (Carbon Steel, phosphated).

Ordering Codes						
Cover Plate *DPAD-*4S-*W1						
* Cover Plate	1	DPAD				
* STAUFF Group	4S-D 5S-D	4S 5S				
* Material code	Carbon Steel, uncoated Carbon Steel, phosphated Carbon Steel, zinc/nickel-plated	W1 W2 W3				
	Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303) Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W4 W5				

## Hexagon Head Bolt Type AS

D



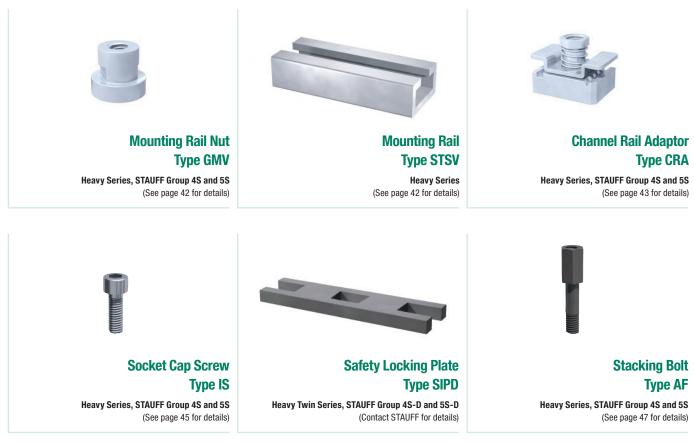


### Hexagon Head Bolt AS

(according to DIN 931 / 933 or ANSI / ASME B18.2.1.) Dimensions applicable only when used with Cover Plate DPAD

Ordering Codes
Hexagon Head Bolt *AS-*M10x70-*W1
* Type of bolt Hexagon Head Bolt (according to DIN 931 / 933 AS or ANSI / ASME B18.2.1.)
* Thread type and size acc. to dimension table M10x70
* Material code Carbon Steel, uncoated W1 Carbon Steel, zinc/nickel-plated W3
Stainless Steel V2A 1.4301 / 1.4305 (AISI 304 / 303)
Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti) <b>W5</b>

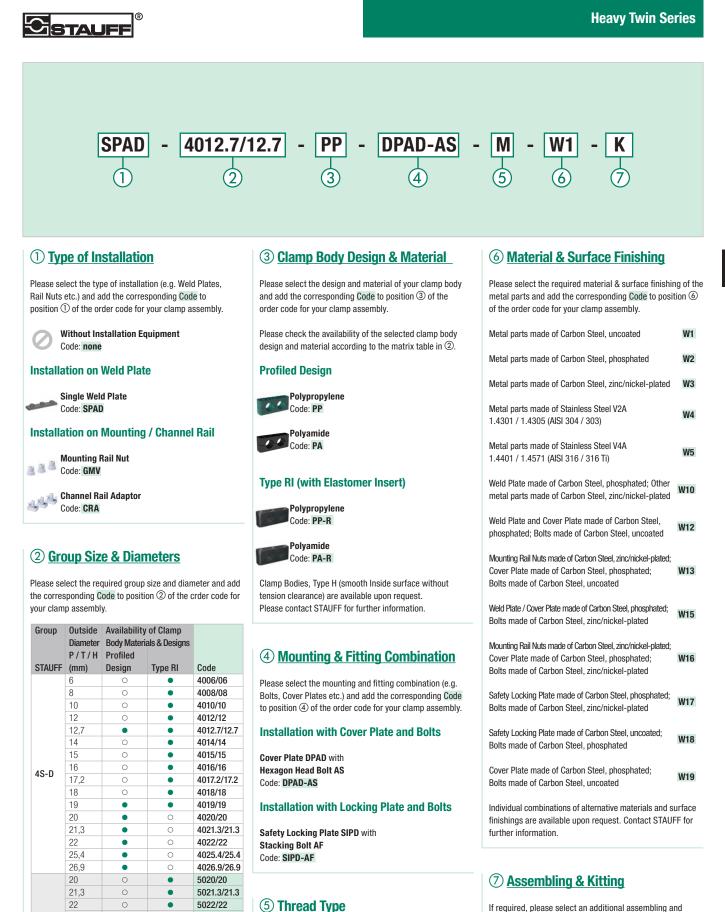
	Group STAUFF	DIN	Dimensions ( ^{mm} / _{in} ) Thread G x L	Ordering Codes (Standard Options)
	4S	2	M10 x 60	AS-M10x60-W1
	40	2	3/8-16 UNC x 2-1/4	AS-3/8-16UNCx2-1/4-W3*
	5S	3	M10 x 70	AS-M10x70-W1
		3	3/8-16 UNC x 2-3/4	AS-3/8-16UNCx2-3/4-W3*


All threaded parts are available with Metric ISO thread orunified coarse (UNC) thread according to dimension table. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

If required, use Safety Washers, type SI as locking devices to prevent Hexagon Head Bolts, type AS from loosening. See page 46 for details.

* Standard finishing option in North America is W3 (Carbon Steel, zinc/nickel-plated).

## **Further Metal Hardware**


For Use with the Heavy Twin Series



www.stauff.com/1/en/#68

R

STAUF



Please select the required thread type and add the corresponding

Code to position (5) of the order code for your clamp assembly.

All threaded parts are available with Metric ISO thread or unified

coarse (UNC) thread according to dimension table.

If required, please select an additional assembling and kitting option and add the corresponding Code to the last position of the order code for your clamp assembly.

Components Supplied Separately Code: none (Standard Option)

Components Assembled Code: A (Special Option)

Components Packed in Kits Code: K (Special Option)

www.stauff.com/1/en/#69

25

28

30

32

38

42

Standard Option

33.7

5S-D

26.9

•

.

0

•

•

5025/25

5028/28

5030/30

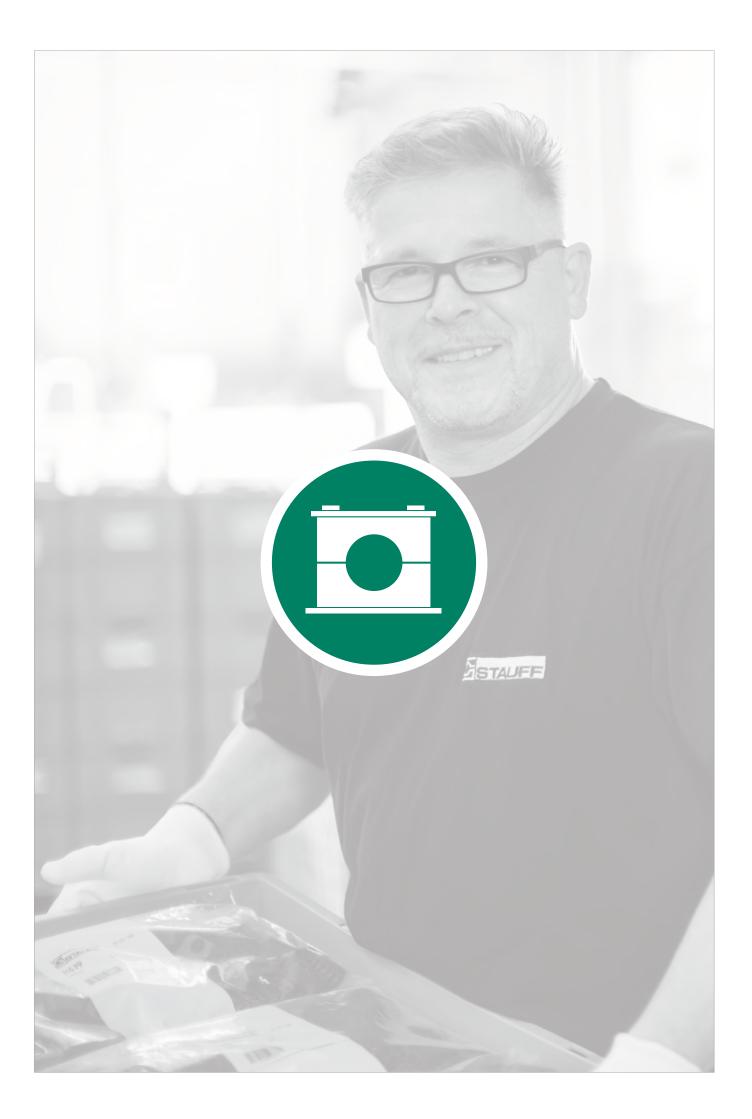
5032/32

5038/38

5042/42

5033.7/33.7

5026.9/26.9


Metric ISO thread

Unified coarse (UNC) thread

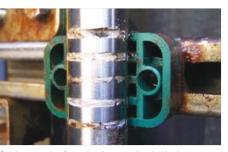
Code: M

Code: U

D






ann a

**M**III What

	Introduction	72
	Standard Series	74-81
	ACT Clamp Body	74
	Installation on Weld Plates	75
	Multi-Level Installation (with Weld Plate)	76
	Installation with Channel Rail Adaptors	77
	Installation in Field Trays / Cable Ladders	78
	Multi-Level Installation (with Stacking & Hammerhead Bolts)	79
	Multi-Level Installation in Field Trays / Cable Ladders (with Hammerhead Bolts)	80
1	Clamp Assemblies	81
	Twin Series	82-89
	ACT Clamp Body	82
	Installation on Weld Plates	83
	Multi-Level Installation (with Weld Plate)	84
	Installation with Channel Rail Adaptors	85
	Installation in Field Trays / Cable Ladders	86
	Multi-Level Installation (with Stacking & Hammerhead Bolts)	87
	Multi-Level Installation in Field Trays / Cable Ladders (with Hammerhead Bolts)	88
	Clamp Assemblies	89



#### STAUFF ACT Anti-Corrosion Technology



Crevice corrosion formed under a regular plastic clamp



Crevice corrosion formed under a regular plastic clamp

#### **Stainless Steel Pipework**

Stainless steel pipework on oil and gas platform and processing plants (that are located offshore and up to 50 km inland) is used over a wide range of temperature, flow and pressure conditions, e.g. for process instrumentation and sensing, as well as for chemical inhibition, hydraulic or utility lines.

The typical tubing material selected for these particular applications is AISI 316 stainless steel, although in more recent times other tube materials have been utilized to try and counteract the offshore corrosion issue.

In all major offshore oil and gas regions – including the Gulf of Mexico, the North Sea, the Gulf of Guinea and the China Sea – corrosion of AISI 316 stainless steel pipework can be observed, and has been a researched and well documented problem as well as a costly and time consuming issue with regard to maintenance processes for many years.

#### **Pitting Corrosion**

One of the most prevalent forms of localised corrosion is pitting corrosion: Under certain specific conditions – particularly involving chlorides (such as sodium chloride in seawater) and exacerbated by elevated temperatures – small pits can form in a stainless steel surface.

Dependent upon both the environment and the stainless steel itself, these pits may continue to grow and eventually lead to perforation of tubing walls and leaks, while the majority of the surface may still be totally unaffected.

Pitting corrosion is often quite easy to recognise: small individual pits and - in later stages - sometimes deeper and connected pits can be observed by visual inspection with the unaided eye.

#### **Crevice Corrosion**

Another dominant type is crevice corrosion, which is a lot more difficult to observe: It usually tends to occur in shielded areas such as crevices, formed under gaskets, washers, fastener heads, insulating material, surface deposits, disbonded coatings, threads and lap joints.

Pipe clamps made of plastic in particular have also been prone to inducing crevice corrosion in the past, because the plastic deforms around the tubing and creates even tighter crevices.

Crevice corrosion is always initiated by changes in the local chemistry within the shielded area, usually associated with a stagnant solution on the micro-environmental level:

- Trapped seawater becomes stagnant
- Depletion of inhibitor and oxygen
- A shift to acid conditions
- Build-up of aggressive ion species
- (such as sodium chloride in seawater)
- Accelerated corrosion process

Crevice corrosion can have serious and adverse consequences eventually leading to perforation of tubing walls and the escape of highly flammable and hazardous fluids and chemicals.

#### **Material Selection**

Hence, the selection of proper materials and the use of robust design and safe construction practices are mandatory, even if crevices are sometimes difficult or even impossible to avoid in tubing installations when using regular types of tubing supports and clamps.

This is where STAUFF ACT Clamps come into play ...

#### **Corrosion Facts**

Corrosion in general is a naturally occurring phenomenon commonly defined as the deterioration of a substance (usually a metal) or its properties because of a reaction with its environment. Like other natural hazards, corrosion can cause not only expensive but also dangerous damage to almost everything from automobiles, home appliances and drinking water systems to pipelines, bridges and public buildings.

Figures provided by the U.S. National Climatic Data Center underline that major weather related disasters the U.S. incurred total losses of averaging USD 17 billion annually (1980 – 2001). According to U.S. corrosion studies, the estimated direct cost of metallic corrosion in general was USD 276 billion on an annual basis in 1998. This represented 3,1% of the U.S. Gross Domestic Product.

Direct corrosion costs associated with the domestic oil and gas production activities in the U.S. were determined to be about USD 1,4 billion annually, with USD 0,6 billion attributed to surface piping and facility costs, USD 0,5 billion to downhole tubing, and USD 0,3 billion to capital expenditures related to corrosion.

The U.S. refineries represent approximately 23% of the world's petroleum production in 1996 supplying more than 18 million barrels of refined petroleum products per day, with a total corrosion related direct cost of USD 3,7 billion. Maintenance expenses make up USD 1,8 billion of this total, vessel expenses are USD 1,4 billion and fouling costs are approximately USD 0,5 billion annually.

Source of Information: Report No. FHWA-RD-01-156, September 2001 Corrosion Costs and Preventive Strategies in the United States Report by CC Technologies Laboratories, Inc. to Federal Highway Administration Office of Infrastructure Research and Development



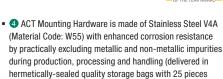


#### **Main Features**

Efficient Prevention of Crevice Corrosion under Pipe Clamps on Stainless Steel Pipework Middle- and Long-Term Cost Savings due to Extended Service and Maintenance Intervals

#### **Construction based on STAUFF Clamps**

- Design based on Original STAUFF Clamps according to DIN 3015, Parts 1 and 3 (Standard Series and Twin Series), the tried and tested industry standard for several decades
- Covering the most commonly used metric and imperial pipe diameters from 6 mm to 42 mm (from 1/4 inch to 1 1/2 inch)
- Alternative configurations and pipe diameters on request
- Installation time reduction (compared to alternative designs)


#### Independent Testing and Approval

- Subject to stringent testing at the STAUFF in-house laboratories located in Werdohl (Germany)
- Salt spray tests according to ASTM B117 applied in controlled laboratory environments
- Long-term field tested on a rig in the Dutch sector of the North Sea
- Tests results independently assessed by Centre for Corrosion Technolog at Sheffield Hallam University
- Fully detailed, independent test reports available on request

#### **Innovative Design and Materials**

- Material and design in compliance with section 7.3 (Tubing Installation) of the Norwegian offshore standard Norsok Z-010 (Revision 3, published in October 2000), API RP 552 and NACE SP 0108-2008 (section 13)
- O Clamp body made of flame-retardant PP-V0 plastic material; tested and V0 classified according to UL 94
- Integrated ACE anti-corrosion elastomer strips avoid the accumulation of seawater between clamp body and pipe
- Orainage channels aid the dispersal of seawater (self-draining)





Technology protected

by utility model patent

Corrosion Innovation

 High UV stability of the clamp body material; resistant against seawater, rain and oil

each to avoid contamination during transport)

- Suitable for continuous exposure to temperatures from -25 °C to +80 °C (from -13 °F to +176 °F)
- To be used in sub-sea and top-side environments; alleviating the requirement for two different products



Salt-spray testing of ACT Mounting Hardware (above of the picture) compared to contaminated hardware made of Stainless Steel V4A (below of the picture)

#### Design

STAUFF ACT Clamps are an innovatively designed solution for the installation of instrumentation pipework where anti-corrosion properties are of paramount importance (e.g. in the fields of offshore oil and gas exploration and processing).

The design – based on the tried and tested STAUFF Clamps according to DIN 3015 – offers installation time reduction and long term cost savings due to extended service intervals.

The STAUFF ACT clamp body design is available for the Standard Series (DIN 3015, Part 1) and the Twin Series (DIN 3015, Part 3) to cover the most commonly used metric and imperial pipe diameters from 6 mm to 42 mm (1/4 inch to 1 1/2 inch).

#### Development

Throughout their development, STAUFF ACT Clamps have been subject to stringent testing at the STAUFF in-house laboratories located in Werdohl, Germany.

In order to ensure credibility of the product, the development process has also involved independent testing.

#### Sheffield Hallam University

To achieve this, the services of the Centre for Corrosion Technology at Sheffield Hallam University's Materials and Engineering Research Institute have been utilized, applying advanced techniques with equipment such as high resolution surface metrology and form measurement systems. In a controlled laboratory environment, continous hot salt spray tests according to ASTM B117 have been applied for periods of 2000 hours to various clamp configurations holding AISI 316 stainless steel tubing.



In addition to that, independent field test samples – located on an oil rig in the Dutch sector of the North Sea – have also been assessed at the Sheffield Hallam University facilities.

Both independent tests have recorded positive results in favour of the anti-corrosion attributes of the STAUFF ACT Clamp. Fully detailed test reports are available upon request.

#### Conformity

Using flame-retardant PP-V0 plastic material for the clamp body and ACE anti-corrosion elastomer material for the rubber strips, STAUFF ACT Clamps have been constructed in compliance with section 7.3 (Tubing Installation) of the Norwegian offshore standard Norsok Z-010 (Revision 3, published in October 2000). They also comply with Norsok I-001 (Revision 4, published in January 2010), API RP 552 and NACE SP 0108-2008 (section 13).

#### **The Norsok Organisation**

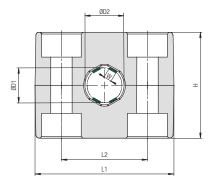


Norsok is a Norwegian industry initiative to add value, reduce cost and lead time and remove unnecessary activities in offshore field developments and operations.

The Norsok standards are developed by the Norwegian petroleum industry and are jointly issued by the Norwegian Oil Industry Association (OLF) and the Federation of Norwegian Engineering Industries (TBL). They are administered by the Norwegian Technology Standards Institution (NTS).

The purpose of the Norsok industry standards is to replace the individual oil company specifications for use in existing and future petroleum industry developments, subject to the individual company's review and application.

#### R STAUFF


#### Standard Series according to DIN 3015, Part 1 **ACT Clamp Body**



Ordering (	Codes	
Clamp Body Clamp Body, ST		*2-*12.7-*ACT *1-*06.4A-*ACT
	consists of two i h two integrated	•
* STAUFF Group		2
* Exact outside	diameter Ø D1 (mi	m) <b>12.7</b>
* Material code		ACT



Integrated Rubber Strips made of Anti-Corrosion Elastomer (ACE)



Group S	Size	Outside Ø D1	Diameter	Ordering Code	Packaging Unit	Dimer	nsions (	^{mm} /in)			
STAUFF	DIN	(mm)	(in)	(2 Clamp Halves)	(in pieces / bag)	ØD2	W	L1	L2	Н	Width
		3,2	1/8	103.2A-ACT	25	6,2	1,1	_			
						.24 9	.04 1,4				
		6		106A-ACT	25	.35	.06				
						9,4	1,5				
		6,4	1/4	106.4A-ACT	25	.37	.06				
1A	1	8		108A-ACT	25	11,0	1,8	37	20	26	30
	1	0		1004-401	20	.43	.07	1.46	.79	1.06	1.18
		9,5	3/8	109.5A-ACT	25	12,5 .49	2,2	-			
						13	2,3				
		10		110A-ACT	25	.51	.09				
		12		1104 407	25	15	2,8	1			
		12		112A-ACT	20	.59	.11	]			
		12,7	1/2	212.7-ACT	25	15,7	3,5				
		,.				.62	.14				
		14		214-ACT	25	17 .67	3,5 .14	-			
						17,3	3,5				
		14,3	9/16	214.3-ACT	25	.68	.14	42	26	32	30
2	2	15		015 ACT	25	18	3,5	1.65	1.02	1.30	1.18
		15		215-ACT	20	.71	.14	]			
		16	5/8	216-ACT	25	19	3,5				
					-	.74	.14				
		18		218-ACT	25	21 .83	3,5 .14	-			
						22	3,5				
		19	3/4	319-ACT	25	.87	.14				
		20		320-ACT	25	23	3,5				
		20		320-A01	20	.91	.14				
3	3	21,3		321.3-ACT	25	24,3	3,5	50	33	35,5	30
						.96 28	.14 3,5	1.97	1.30	1.42	1.18
		25		325-ACT	25	1.10	.14				
		05.4	1	225 4 ACT	25	28,4	3,5				
		25,4	1	325.4-ACT	20	1.12	.14				
		26,9		426.9-ACT	25	31,1	6,0	_			
		- , -			-	1.22	.24	50	10	40	0.0
4	4	28		428-ACT	25	32,2 1.27	6,0 .24	59 2.32	40 1.57	42	30 1.18
						34,2	6,0	2.02	1.07	1,00	1.10
		30		430-ACT	25	1.35	.24	-			
		32	1 1/4	532-ACT	25	36,2	7				
		02	1 1/4		25	1.43	.28				
		35		535-ACT	25	39,2	7	71	50	50	0.0
5	5					1.54 42,2	.28 8	71 2.80	52 2.05	58 2.28	30 1.18
		38	1 1/2	538-ACT	25	42,2	.31	2.00	2.00	2.20	1.10
		40		540 ACT	25	46,2	8				
		42		542-ACT	25	1.82	.31				

Additional sizes and outside diameters are available upon request. Please contact STAUFF for further information.



#### **ACT Mounting Hardware** Installation on Single Weld Plates

#### Required components (for use with single weld plate):

- 2 ACT Hexagon Head Bolts AS...W55
- 1 ACT Cover Plate DP W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 ACT Single Weld Plate SP...W55

Before welding, always make sure that the designated position of the ACT Weld Plate is suitable for the expected loads.

#### Material Code W55

#### **ACT Mounting Hardware** Material Properties and Handling Instructions

ACT Mounting Hardware is made of Stainless Steel V4A (Material Code: W55) with enhanced corrosion resistance by practically excluding metallic and non-metallic impurities during production, processing and handling.

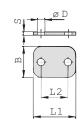
ACT Mounting Hardware is always delivered in hermetically-sealed quality storage bags with 25 pieces each to avoid contamination during transport.

Always make sure that ACT Mounting Hardware is stored separately from carbon steel and any other metals, and that appropriate tools are used to assemble the clamps. Details: www.stauff.com/act/assembly

#### **ACT Hexagon Head Bolt** Type AS ... W55 (according to DIN 931 / 933)



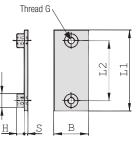



Dimensions applicable only when used with Cover Plate DP and Weld Plate SP

Group STAUFF	DIN	Dimensions ( ^{mm} / _{in} ) Thread G x L	Ordering Code	Packaging Unit (in pieces / bag)
1A	1	M6 x 30 M6 x 1.18	AS-M6x30-W55	25
2	2	M6 x 35 M6 x 1.38	AS-M6x35-W55	25
3	3	M6 x 40 M6 x 1.57	AS-M6x40-W55	25
4	4	M6 x 45 M6 x 1.77	AS-M6x45-W55	25
5	5	M6 x 60 M6 x 2.36	AS-M6x60-W55	25

2	1855-	3

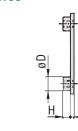
**ACT Cover Plate** 

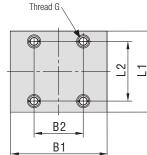

**Type DP ... W55** 



Group		Dimen	sions ("	^{nm} /in)			Ordering Code	Packaging Unit	
STAUFF	DIN	L1	L2	В	S	ØD		(in pieces / bag)	
1A	1	34	20	30	3	7	DP-1A-W55	25	
	1	1.34	.79	1.18	.12	.28	DF-IA-W55	25	
2	2	40,5	26	30	3	7	DP-2-W55	25	
2	2	1.59	1.02	1.18	.12	.28	DF-2-W55	20	
3	0	48	33	30	3	7	DP-3-W55	25	
3	3	1.89	1.30	1.18	.12	.28	DP-3-W00	20	
4	4	57	40	30	3	7	DP-4-W55	25	
4	4	2.24	1.57	1.18	.12	.28	DP-4-W00	20	
F	F	70	52	30	3	7		05	
5	5	2.76	2.05	1.18	.12	.28	DP-5-W55	25	

#### **ACT Single Weld Plate** Type SP ... W55




Group		Dim	ensio	1 <b>s (</b> mm	/in)			Ordering Code	Packaging Unit		
STAUFF	DIN	G	L1	L2	В	S	Н	ØD		(in pieces / bag)	
1A	1	M6	36	20	30	3	6,5	12	SP-1A-M-W55	25	
IA	1	IVIO	1.42	0.79	1.18	.12	.26	.47	3F-TA-W-W33	20	
2	2	M6	42	26	30	3	6,5	12	SP-2-M-W55	25	
2	2	IVIO	1.65	1.02	1.18	.12	.26	.47	31-2-10-005	20	
3	3	M6	50	33	30	3	6,5	12	SP-3-M-W55	25	
3	3	IVIO	1.97	1.30	1.18	.12	.26	.47	3F-3-INI-W00	25	
4	4	M6	60	40	30	3	6,5	12	SP-4-M-W55	25	
4	4	IVIO	2.36	1.57	1.18	.12	.26	.47	5P-4-IVI-W00	20	
E	E	M6	71	52	30	3	6,5	12	SP-5-M-W55	05	
5	5	IVIO	2.80	2.05	1.18	.12	.26	.47	5r-5-14-1455	25	

Ø

#### **ACT Double Weld Plate Type SPD ... W55**





OVAINE END DITEEL												
Group		Dim	ensio	ns ( ^{mr}	ⁿ /in)					Ordering Code	Packaging Unit	
STAUFF	DIN	G	L1	L2	B1	B2	S	Н	ØD		(in pieces / bag)	
1A	1	M6	36	20	60	30,5	3	6,5	12	SPD-1A-M-W55	25	
IA	1	WIO	1.42	0.79	2.36	1.20	.12	.26	.47	3FD-TA-W-W33		
2	2	M6	42	26	60	30,5	3	6,5	12	SPD-2-M-W55	25	
2	2	IVIO	1.65	1.02	2.36	1.20	.12	.26	.47	3FD-2-INI-W33	20	
3	3	M6	50	33	60	30,5	3	6,5	12	SPD-3-M-W55	25	
3	3	1010	1.97	1.30	2.36	1.20	.12	.26	.47	3FD-3-10-W00	20	

S



Alternative types of weld plates are available upon request. Please contact STAUFF for further information.





**ACT Stacking Bolt** 

**Type AF ... W55** 

Rost

#### ACT Mounting Hardware Multi-Level Installation (with Weld Plate)

#### Required components for each level:

- 2 ACT Stacking Bolt AF...W55
- 1 ACT Safety Locking Plate SIG...ACT-W55

Thread G

1 ACT Clamp Body (2 Clamp Halves)

The upper layer is secured by a cover plate and hexagon head bolts. The lower layer has to be mounted to a weld plate (with a recommended maximum of two levels in total).

Hex

#### ACT Mounting Hardware Material Properties and Handling Instructions

ACT Mounting Hardware is made of Stainless Steel V4A (Material Code: W55) with enhanced corrosion resistance by practically excluding metallic and non-metallic impurities during production, processing and handling.

ACT Mounting Hardware is always delivered in hermetically-sealed quality storage bags with 25 pieces each to avoid contamination during transport.

Always make sure that ACT Mounting Hardware is stored separately from carbon steel and any other metals, and that appropriate tools are used to assemble the clamps. <u>Details: www.stauff.com/act/assembly</u>

#### ACT Safety Locking Plate Type SIG ... ACT-W55





Dimensions (mm/in) Packaging Unit Group **Ordering Code** STAUFF DIN G 11 12 13 min. Hex (in pieces / bag) 34 20 12 11 M6 1A 1 AF-1/1A/1D-M-W55 25 .43 1.34 .79 .47 40 26 12 11 2 2 M6 AF-2-M-W55 25 1.57 1.24 .47 .43 44 30 12 11 3 3 M6 AF-3-M-W55 25 .47 .43 1.73 1.18 49 35 12 11 4 4 M6 AF-4-M-W55 25 .47 .43 1.38 1.93 64 50 12 11 5 5 M6 AF-5-M-W55 25 2.52 1.97 .47 .43

Group		Dimens	sions ( ^{mm} )	/in)		Ordering Code	Packaging Unit	
STAUFF	DIN	L	B1	B2	S		(in pieces / bag)	
1A	4	33	28	11,2	2	SIG-1A-ACT-W55	25	
IA	1	1.30	1.10	.44	.08	510-1A-AC1-W00	20	
2	2	39	28	11,2	2	SIG-2-ACT-W55	25	
2	2		1.10	.44	.08	310-2-A01-W33	20	
3	3	47	28	11,2	2	SIG-3-ACT-W55	25	
3	3	1.85	1.10	.44	.08	310-3-ACT-W33	20	
4	4	56	28	11,2	2	SIG-4-ACT-W55	25	
4	4	2.20	1.10	.44	.08	510-4-ACT-W55	20	
5	5	69	28	11,2	2	SIG-5-ACT-W55	25	
0	0	2.72	1.10	.44	.08	310-3-AUT-W33	20	







#### **ACT Mounting Hardware** Installation with Channel Rail Adaptors

#### **Required components:**

- 2 ACT Hexagon Head Bolts AS...W55
- 1 ACT Cover Plate DP W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 2 ACT Channel Rail Adaptors CRA...W55

Suitable for various brands and types of channel rails (including Halfen, Hilti, Unistrut® etc.).

#### Material Code 55

#### **ACT Mounting Hardware** Material Properties and Handling Instructions

ACT Mounting Hardware is made of Stainless Steel V4A (Material Code: W55) with enhanced corrosion resistance by practically excluding metallic and non-metallic impurities during production, processing and handling.

ACT Mounting Hardware is always delivered in hermetically-sealed quality storage bags with 25 pieces each to avoid contamination during transport.

Always make sure that ACT Mounting Hardware is stored separately from carbon steel and any other metals, and that appropriate tools are used to assemble the clamps. Details: www.stauff.com/act/assembly

#### **ACT Hexagon Head Bolt** Type AS ... W55 (according to DIN 931 / 933)

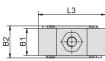




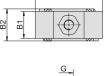
Dimensions applicable only when used with Cover Plate DP and Weld Plate SP

Group STAUFF	DIN	Dimensions ( ^{mm} / _{in} ) Thread G x L	Ordering Code	Packaging Unit (in pieces / bag)
1A	1	M6 x 30 M6 x 1.18	AS-M6x30-W55	25
2	2	M6 x 35 M6 x 1.38	AS-M6x35-W55	25
3	3	M6 x 40 M6 x 1.57	AS-M6x40-W55	25
4	4	M6 x 45 M6 x 1.77	AS-M6x45-W55	25
5	5	M6 x 60 M6 x 2.36	AS-M6x60-W55	25

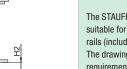
-	735-0	2
P		


**ACT Cover Plate** 

**Type DP ... W55** 




Group		Dimen	sions ("	^{nm} /in)			Ordering Code	Packaging Unit	
STAUFF	DIN	L1	L2	В	S	ØD		(in pieces / bag)	
1A	4	34	20	30	3	7	DP-1A-W55	25	
IA	1	1.34	.79	1.18	.12	.28	DF-IA-W55	20	
2	2	40,5	26	30	3	7	DP-2-W55	25	
2	2	1.59	1.02	1.18	.12	.28	DF-2-W35	20	
3	3	48	33	30	3	7	DP-3-W55	0.5	
3	3	1.89	1.30	1.18	.12	.28	DP-3-W55	25	
4	4	57	40	30	3	7	DP-4-W55	05	
4	4	2.24	1.57	1.18	.12	.28	DP-4-W55	25	
E	E	70	52	30	3	7		05	
5 8	5	2.76	2.05	1.18	.12	.28	DP-5-W55	25	


#### **ACT Channel Rail Adaptor Type CRA ... W55**







Ĥ



#### **Suitability Chart for ACT Channel Rail Adaptors** in the Standard Series

The STAUFF Channel Rail Adaptor, type CRA, is suitable for various brands and types of channel rails (including Halfen, Hilti, Unistrut® etc.). The drawing describes the basic dimensional requirements for channel rails to be used with STAUFF Channel Rail Adaptors, type CRA.

In case of doubt, please do not hesitate to contact STAUFF prior to field application.

min. 22 (min. .87)

max. 28 (max. 1.10)

Group		Dimensions	( ^{mm} /in)								Ordering Code	Packaging Unit
STAUFF	DIN	G	L1	L2	L3	B1	B2	H1	H2	H3		(in pieces / bag)
1A	1											
2	2											
3	3	M6	21	35	40	16	19	6	5,5	20,5	CRA-1-8/1D-M-W55	25
Ū	0		.83	1.38	1.57	.63	.75	.24	.22	.81		20
4	4											
5	5											







#### ACT Mounting Hardware Installation in Field Trays / Cable Ladders

#### **Required components:**

- 2 ACT Self-Locking Nuts MUS-HKS ... W55
- 1 ACT Cover Plate DP ... W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 2 ACT Hammerhead Bolts HKS ... W55

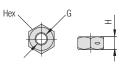
Suitable for commonly used field trays and cable ladders with diagonal, lengthwise and/or crosswise slots and perforations.

#### ACT Mounting Hardware Material Properties and Handling Instructions

ACT Mounting Hardware is made of Stainless Steel V4A (Material Code: W55) with enhanced corrosion resistance by practically excluding metallic and non-metallic impurities during production, processing and handling.

ACT Mounting Hardware is always delivered in hermetically-sealed quality storage bags with 25 pieces each to avoid contamination during transport.

Always make sure that ACT Mounting Hardware is stored separately from carbon steel and any other metals, and that appropriate tools are used to assemble the clamps. <u>Details: www.stauff.com/act/assembly</u>


#### ACT Cover Plate Type DP ... W55

Rost



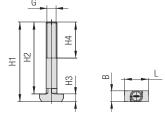
**All-Metal Self-Locking ACT Nut** 

Type MUS-HKS ... W55 (similar to DIN 980 / Biloc)



Ε

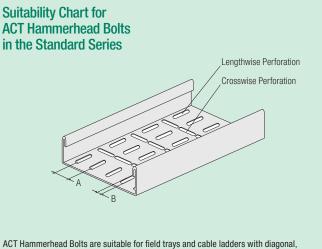
For use with ACT Hammerhead Bolts HKS ... W55


Group		Dimensions	5 ( ^{mm} /in)		Ordering Code	Packaging Unit
STAUFF	DIN	Thread G	Н	Hex		(in pieces / bag)
1A	1					
2	2					
3	3	M6	5	10	MUS-HKS-M6-W55	25
4	4		.20	.39		
5	5					

THON								
Group Dimensions ( ^{mm} / _{in} )							Ordering Code	Packaging Unit
STAUFF	DIN	L1	L2	В	S	ØD		(in pieces / bag)
1A	1	34	20	30	3	7	DP-1A-W55	25
IA	1	1.34	.79	1.18	.12	.28	DF-1A-W33	20
2	2	40,5	26	30	3	7	DP-2-W55	25
2	2	1.59	1.02	1.18	.12	.28	DI 2 1100	20
3	3	48	33	30	3	7	DP-3-W55	25
3	3	1.89	1.30	1.18	.12	.28	DF-3-W35	20
4	4	57	40	30	3	7	DP-4-W55	25
4	4	2.24	1.57	1.18	.12	.28	DF-4-W33	20
5	5	70	52	30	3	7	DP-5-W55	25
5	5	2.76	2.05	1.18	.12	.28	DE-0-M00	20

L2 L1

## ACT Hammerhead Bolt Type HKS ... W55








For use with Self-Locking ACT Nuts MUS-HKS ... W55

Group		Dim	ensior	1 <b>S (</b> ^{mm} /i	n)				Ordering Code	Packaging Unit
STAUFF	DIN	G	H1	H2	H3	H4 min	В	L		(in pcs. / bag)
1A	1	M6	44,3	40	4,3	20	6,1	13,3	HKS-M6x40-W55	25
IA	I	IVIO	1.74	1.57	.17	.79	.24	.52	HKS-IN6X40-W5	20
2	2	M6	49,3	45	4,3	20	6,1	13,3	HKS-M6x45-W55	25
2	2	IVIO	1.94	1.77	.17	.79	.24	.52	11K3-100x43-1033	20
3	3	M6	54,3	50	4,3	20	6,1	13,3	HKS-M6x50-W55	25
5	5	IVIO	2.14	1.97	.17	.79	.24	.52	11K3-100X30-1033	20
4	4	M6	59,3	55	4,3	20	6,1	13,3	HKS-M6x55-W55	25
4	4	IVIO	2.33	2.17	.17	.79	.24	.52	11K3-100X33-1033	20
5	5	M6	74,3	70	4,3	20	6,1	13,3	HKS-M6x70-W55	25
5	5	IVIO	2.93	2.76	.17	.79	.24	.52	11K3-100X70-1035	20



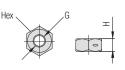
ACT Hammerhead Bolts are suitable for field trays and cable ladders with diagonal, lengthwise and/or crosswise slots and perforations that meet the following requirements:

Dimension A: Equal to the bolt center spacing of the clamp assembly
 Dimension B: 6,2 mm ... 7,0 mm / .24 in ... .28 in (Min ... Max)

In case of doubt, please do not hesitate to contact STAUFF prior to field application.






#### ACT Mounting Hardware Multi-Level Installation (with Stacking & Hammerhead Bolts)

Required components (for a recommended maximum of two levels in total):

- 2 ACT Self-Locking Nuts MUS-HKS ... W55
- 1 ACT Cover Plate DP ... W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 ACT Safety Locking Plate SIG...ACT-W55
- 2 ACT Stacking Bolts AF-HKSK...W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 2 ACT Hammerhead Bolts HKSK ... W55

#### All-Metal Self-Locking ACT Nut Type MUS-HKS ... W55 (similar to DIN 980 / Biloc)





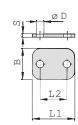


For use with ACT Stacking Bolts AF-HKS ... W55

Group STAUFF	DIN	Dimensions Thread G	s ( ^{mm} / _{in} ) H	Hex	Ordering Code	Packaging Unit (in pieces / bag)
1A	1					
2	2	M6	5 .20	10 .39	MUS-HKS-M6-W55	25
3	3					

#### ACT Mounting Hardware Material Properties and Handling Instructions

production, processing and handling.


ACT Mounting Hardware is made of Stainless Steel V4A (Material Code: W55) with enhanced corrosion resistance by practically excluding metallic and non-metallic impurities during

ACT Mounting Hardware is always delivered in hermetically-sealed quality storage bags with 25 pieces each to avoid contamination during transport.

Always make sure that ACT Mounting Hardware is stored separately from carbon steel and any other metals, and that appropriate tools are used to assemble the clamps. Details: www.stauff.com/act/assembly

### ACT Cover Plate Type DP ... W55





Rost frei

Group		Dimen	sions ( ^m	^m /in)			Ordering Code	Packaging Unit
STAUFF	DIN	L1	L2	В	S	ØD		(in pieces / bag)
1.0	4	34	20	30	3	7	DP-1A-W55	25
1A 1		1.34	.79	1.18	.12	.28	DF-1A-W55	20
2	2	40,5	26	30	3	7	DP-2-W55	25
2	2	1.59	1.02	1.18	.12	.28	DF-2-W55	20
3	3	48	33	30	3	7	DP-3-W55	25
З	3	1.89	1.30	1.18	.12	.28	DL-9-M22	20

#### ACT Stacking Bolt Type AF-HKSK ... W55



Dimensio

M6 44

M6 54 0.1

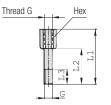
M6 2.1

G L1

Group

1A

2


3

STAUFF DIN

1

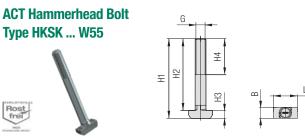
2

3



For use with Self-Locking ACT Nuts MUS-HKS ... W55

nsions (	^{mm} /in)			Ordering Code	Packaging Unit
L1	L2	L3 min.	Hex		(in pieces / bag)
44	30	12	11	AF-HKSK-1A-M-W55	25
1.73	1.18	.47	.43	AF-IIK3K-IA-IVI-W33	20
54	40	12	11	AF-HKSK-2-M-W55	25
2.13	1.57	.47	.43	AL-UK9K-5-MI-M00	20
54	40	12	11	AF-HKSK-3-M-W55	25
2.13	1.57	.47	.43	AI -IIK3K-3-IM-W00	20


#### ACT Safety Locking Plate Type SIG ... ACT-W55







Group		Dimens	sions ( ^{mm} )	· ·		Ordering Code	Packaging Unit
STAUFF	DIN	L	B1	B2	S		(in pieces / bag)
1A	4	33	28	11,2	2	SIG-1A-ACT-W55	25
IA	1	1.30	1.10	.44	.08	510-1A-A01-W55	20
2	2	39	28	11,2	2	SIG-2-ACT-W55	25
2	2	1.54	1.10	.44	.08	310-2-A01-W33	20
3	3	47	28	11,2	2	SIG-3-ACT-W55	25
3	5	1.85	1.10	.44	.08	310-3-A01-W33	20



Group		Dim	ensior	1 <b>s (</b> ^{mm} /i	n)	Ordering Code	Packaging Unit			
STAUFF	DIN	G	H1	H2	H3	H4 min	В	L		(in pcs. / bag)
1A	1	M6	29,3	25	4,3	20	6,1	13,3	HKSK-M6x25-W55	25
IA	I	IVIO	1.15	.98	.17	.79	.24	.52	HK5K-IN6X25-W55	20
2	2	M6	36,3	32	4,3	20	6,1	13,3	HKSK-M6x32-W55	25
2	2	IVIO	1.43	1.26	.17	.79	.24	.52	HK3K-W0X32-W33	20
0	0	MC	39,3	35	4,3	20	6,1	13,3	UVOV MOVOE WEE	05
3	3	M6	1.55	1.38	.17	.79	.24	.52	HKSK-M6x35-W55	20





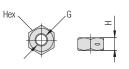


#### ACT Mounting Hardware Multi-Level Installation in Field Trays / Cable Ladders (with Hammerhead Bolts)

Required components (for a recommended maximum of two levels in total):

- 2 ACT Self-Locking Nuts MUS-HKS ... W55
- 1 ACT Cover Plate DP ... W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 ACT Clamp Body (2 Clamp Halves)
- 2 ACT Hammerhead Bolts HKSV ... W55

# Waterial Code ACT Mounting Hardware Material Properties and Handling Instructions


ACT Mounting Hardware is made of Stainless Steel V4A (Material Code: W55) with enhanced corrosion resistance by practically excluding metallic and non-metallic impurities during production, processing and handling.

ACT Mounting Hardware is always delivered in hermetically-sealed quality storage bags with 25 pieces each to avoid contamination during transport.

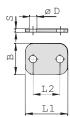
Always make sure that ACT Mounting Hardware is stored separately from carbon steel and any other metals, and that appropriate tools are used to assemble the clamps. <u>Details: www.stauff.com/act/assembly</u>

#### All-Metal Self-Locking ACT Nut Type MUS-HKS ... W55 (similar to DIN 980 / Biloc)





Ε

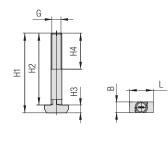

For use with ACT Hammerhead Bolts HKS ... W55

Group Dimensi					Ordering Code	Packaging Unit
STAUFF	DIN	Thread G	Н	Hex		(in pieces / bag)
1A	1					
2	2	M6	5 .20	10 .39	MUS-HKS-M6-W55	25
			.20	.39		
3	3					



**ACT Cover Plate** 

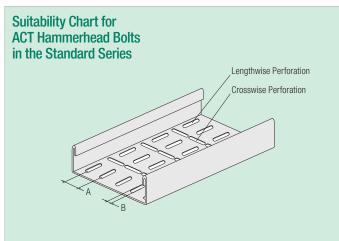
**Type DP ... W55** 






Group		Dimen	sions ("	^{um} /in)		Ordering Code	Packaging Unit	
STAUFF	DIN	L1	L2	В	S	ØD	Ū	(in pieces / bag)
1A	4	34	20	30	3	7	DP-1A-W55	25
IA I	1	1.34	.79	1.18	.12	.28	DF-IA-W55	20
2	2	40,5	26	30	3	7	DP-2-W55	25
2	2	1.59	1.02	1.18	.12	.28	DP-2-W55	20
0	2	48	33	30	3	7	DP-3-W55	25
3 3		1.89	1.30	1.18	.12	.28	DP-3-W55	20

#### ACT Hammerhead Bolt Type HKSV ... W55






Rost frei

For use with Self-Locking ACT Nuts MUS-HKS ... W55

Group		Dim	ension	5 ( ^{mm} /in	)		Ordering Code	Packaging Unit		
STAUFF	DIN	G	H1	H2	H3	H4 min	В	L		(in pcs. / bag)
1A	4	M6	68,3	64	4,3	20	6,1	13,3	HKSV-M6x64-W55	05
IA	1	IVIO	2.69	2.52	.17	.79	.24	.52	HK5V-IVI0X04-W00	20
0	2	MC	80,3	76	4,3	20	6,1	13,3	HKSV-M6x76-W55	05
2	2	M6	3.16	2.99	.17	.79	.24	.52	HV2A-INIOX10-M23	20
3	3	M6	87,3	83	4,3	20	6,1	13,3	UKOV MOVOD WEE	05
3	3	IVIO	3.44	3.27	.17	.79	.24	.52	HKSV-M6x83-W55	25



ACT Hammerhead Bolts are suitable for field trays and cable ladders with diagonal, lengthwise and/or crosswise slots and perforations that meet the following requirements:

- Dimension A: Equal to the bolt center spacing of the clamp assembly
   Dimension B: 6,2 mm ... 7,0 mm / .24 in ... .28 in (Min ... Max)
- In case of doubt, please do not hesitate to contact STAUFF prior to field application.





**Order Code** 

**Order Code** 

## STAUFF ACT Clamps: Anti-Corrosion Technology



#### Multi-Level Installation (with Weld Plate)

Required components (for each level) for a maximum of two levels in total:

2 Stacking Bolt AF...W55

1 Safety Locking Plate SIG...ACT-W55

1 ACT Clamp Body (2 Clamp Halves)

The upper layer has to be secured by a cover plate and hexagon head bolts. The lower level has to be mounted to a weld plate.

SP-110a-ACT-DP-AS-M-W55

#### Installation on Weld Plate

#### Required components:

- 2 Hexagon Head Bolts AS...W55
- 1 Cover Plate DP...W55
- 1 ACT Clamp Body (2 Clamp Halves) 1 Single Weld Plate SP...W55

Before welding, always make sure that the designated position of the weld plate is suitable for the expected loads.

#### **Order Code**

#### 110a-ACT-SIG-AF-M-W55

W55 is the recommended option for metal hardware to be used with STAUFF ACT Clamps.



CRA-110a-ACT-DP-AS-M-W55

W55 is the recommended option for metal hardware to be used with STAUFF ACT Clamps.

#### Installation with Channel Rail Adaptors

Required components:

W55 is the recommended option for metal hardware to be used with STAUFF ACT Clamps.

- 2 Hexagon Head Bolts AS...W55
- 1 Cover Plate DP...W55
- 1 Clamp Body (2 Clamp Halves) 2 Channel Rail Adaptors CRA...W55
- 2 Ghannei Han Auaptors GhA....W55

Suitable for various brands and types of channel rails (including Halfen, Hilti, Unistrut® etc.).



#### Installation in Field Trays / Cable Ladders

Required components:

2 Self-Locking Nuts MUS-HKS ... W55 1 Cover Plate DP ... W55

- 1 Clamp Body (2 Clamp Halves)
- 2 Hammerhead Bolts HKS ... W55

Suitable for commonly used field trays and cable ladders with diagonal, lengthwise and/or crosswise slots and perforations.

## Order Code

#### HKS-110a-ACT-DP-MUS-M-W55

W55 is the recommended option for metal hardware to be used with STAUFF ACT Clamps.



#### Multi-Level Installation in Field Trays / Cable Ladders

Required components (for a maximum of two levels in total):

- 2 Self-Locking Nuts MUS-HKS ... W55 1 Cover Plate DP ... W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 Safety Locking Plate SIG...ACT-W55
- 2 Stacking Bolts AF-HKSK...W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 2 Hammerhead Bolts HKSK ... W55

Suitable for commonly used field trays and cable ladders with diagonal, lengthwise and/or crosswise slots and perforations.

#### **Order Codes**

Upper Level: HKSK-212.7-ACT-DP-MUS-M-W55 Lower Level: 212.7-ACT-SIG-AF-HKSK-M-W55

W55 is the recommended option for metal hardware to be used with STAUFF ACT Clamps.



#### Multi-Level Installation in Field Trays / Cable Ladders

<u>Required components</u> (for a maximum of two levels in total):

2 Self-Locking Nuts MUS-HKS ... W55 1 Cover Plate DP ... W55

- 1 ACT Clamp Body (2 Clamp Halves)
- 1 ACT Clamp Body (2 Clamp Halves)
- 2 Hammerhead Bolts HKSV ... W55

Suitable for commonly used field trays and cable ladders with diagonal, lengthwise and/or crosswise slots and perforations.

#### **Order Codes**

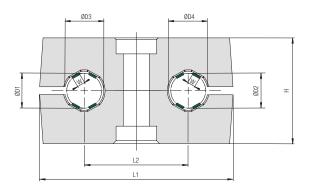
#### Upper Level: 212.7-ACT (Clamp Body only) Lower Level: HKSV-212.7-ACT-DP-MUS-M-W55

W55 is the recommended option for metal hardware to be used with STAUFF ACT Clamps.

E

#### R STAUFF

#### Twin Series according to DIN 3015, Part 3 **ACT Clamp Body**




#### **Ordering Codes** *2*12.7/12.7-*ACT **Clamp Body** One clamp body consists of two identical clamp halves, each with four integrated rubber strips. * 1st Part of STAUFF Group * Exact outside diameters Ø D1 / Ø D2 (mm) 12.7/12.7 * Material code ACT



Integrated Rubber Strips made of Anti-Corrosion Elastomer (ACE)

2



Group S	ize		Diameters	Ordering Code	Packaging Unit	Dime	nsions	( ^{mm} /in)			
STAUFF	DIN	ØD1/ØD (mm)	2 (in)	(2 Clamp Halves)	(in pieces / bag)	ØD3/ ØD4	W	L1	L2	Н	Width
		6		106/06-ACT	25	9 .35	1,4 .06	_			
						9,4	1,5				
		6,4	1/4	106.4/06.4-ACT	25	.37	.06				
1D	1	9,5	3/8	109.5/09.5-ACT	25	12,5 .49	2,2	36	20	26,6 1.05	30 1.18
		10		440/40 407	05	13	2,3				
		10		110/10-ACT	25	.51	.09				
		12		112/12-ACT	25	15	2,8	_			
						.59 15,7	.11 3,5				
2D	2	12,7	1/2	212.7/12.7-ACT	25	.62	.14	53	29	26,6	30
20	L	14		214/14-ACT	25	17 .67	3,5 .14	2.09	1.14	1.05	1.18
		18		318/18-ACT	25	21	3,5				
						22	3,5				
		19	3/4	319/19-ACT	25	.87	.14	-			
3D	3	20		320/20-ACT	25	23 .91	3,5 .14	67 2.64	36 1.42	36,6	30 1.18
						24,3	3,5				
		21,3		321.3/21.3-ACT	25	.96	.14				
		25,4	1	325.4/25.4-ACT	25	28,4 1.12	3,5 .14				

Additional outside diameters and combinations of different outside diameters are available upon request. Please contact STAUFF for further information.





#### **ACT Mounting Hardware** Installation on Single Weld Plates

#### **Required components:**

- I ACT Hexagon Head Bolt AS...W55
- I ACT Cover Plate GD...W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 ACT Single Weld Plate SP...W55

Before welding, always make sure that the designated position of the ACT Weld Plate is suitable for the expected loads.

#### **Material Code** W55

#### **ACT Mounting Hardware** Material Properties and Handling Instructions

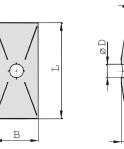
ACT Mounting Hardware is made of Stainless Steel V4A (Material Code: W55) with enhanced corrosion resistance by practically excluding metallic and non-metallic impurities during production, processing and handling.

ACT Mounting Hardware is always delivered in hermetically-sealed quality storage bags with 25 pieces each to avoid contamination during transport.

Always make sure that ACT Mounting Hardware is stored separately from carbon steel and any other metals, and that appropriate tools are used to assemble the clamps. Details: www.stauff.com/act/assembly

#### **ACT Hexagon Head Bolt** Type AS ... W55 (according to DIN 931 / 933)

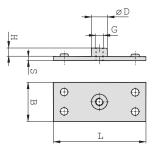





Dimensions applicable only when used with Cover Plate GD and Weld Plate SP

Group STAUFF	DIN	Dimensions ( ^{mm} / _{in} ) Thread G x L	Ordering Code	Packaging Unit (in pieces / bag)
1D	1	M6 x 35 M6 x 1.38	AS-M6x35-W55	25
2D	2	M8 x 35 M8 x 1.38	AS-M8x35-W55	25
3D	3	M8 x 45 M8 x 1.77	AS-M8x45-W55	25




**ACT Cover Plate** 





Group		Dimen	sions ("	^{im} /in)			Ordering Code	Packaging Unit
STAUFF	DIN	L	В	Н	S	ØD		(in pieces / bag)
1D	4	34	30	7	3	7	GD-1D-W55	25
ID	1	1.34	1.18	.28	.12	.28	GD-1D-W55	20
2D	2	52	30	7	3	9	GD-2D-W55	25
20	2	2.05	1.18	.28	.12	.35	GD-2D-W00	20
3D	3	65	30	7	3	9	GD-3D-W55	25
30	3	2.56	1.18	.28	.12	.35	GD-3D-W55	25

#### **ACT Single Weld Plate** Type SP ... W55





Group		Dime	nsions	; ( ^{mm} /in)				Ordering Code	Packaging Unit
STAUFF	DIN	G	L	В	S	Н	ØD		(in pieces / bag)
1D	4	M6	37	30	3	6,5	12	SP-1D-M-W55	25
ID	1	IVIO	1.46	1.18	.12	.26	.47	5P-1D-INI-W00	20
0.0	0	M8	55	30	5	6	14		05
2D	2	IVIO	2.17	1.18	.20	.24	.55	SP-2D-M-W55	25
20	0	M8	70	30	5	6	14	SP-3D-M-W55	25
3D	3	IVIO	2.76	1.18	.20	.24	.55	5P-3D-IVI-W35	20



S





**ACT Stacking Bolt** 

**Type AF ... W55** 

#### ACT Mounting Hardware Multi-Level Installation (with Weld Plate)

#### Required components for each level:

- I ACT Stacking Bolt AF...W55
- 1 ACT Safety Locking Plate SIV...ACT
- 1 ACT Clamp Body (2 Clamp Halves)

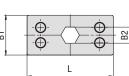
Thread G

The upper layer is secured by a cover plate and hexagon head bolts. The lower layer has to be mounted to a weld plate (with a recommended maximum of two levels in total).

Hex

#### ACT Mounting Hardware Material Properties and Handling Instructions

ACT Mounting Hardware is made of Stainless Steel V4A (Material Code: W55) with enhanced corrosion resistance by practically excluding metallic and non-metallic impurities during production, processing and handling.


ACT Mounting Hardware is always delivered in hermetically-sealed quality storage bags with 25 pieces each to avoid contamination during transport.

Always make sure that ACT Mounting Hardware is stored separately from carbon steel and any other metals, and that appropriate tools are used to assemble the clamps. <u>Details: www.stauff.com/act/assembly</u>

#### ACT Safety Locking Plate Type SIV ... ACT







Made of flame-retardant PP-VO plastic material; tested and VO classified according to UL 94

Group		Dimen	isions (	^{mm} /in)			Order Code	Packaging Unit
STAUFF	DIN	G	L1	L2	L3 min.	Hex		(in pieces / bag)
1D	1	M6	34	20	12	11	AF-1/1A/1D-M-W55	25
ID	I	IVIO	1.33	.78	.47	.43	AF-1/1A/1D-W-W55	20
2D	2	M8	33	20	11	12	AF-2D-M-W55	25
20	2	IVIO	1.30	.78	.43	.47	AF-2D-IVI-W00	20
20	0	M8	44	29	15	12		0.5
3D	3	IVIO	1.73	1.14	.59	.47	AF-3D-M-W55	25

Group		Dimens	ions ( ^{mm} )	/in)		Order Code	Packaging Unit
STAUFF	DIN	L	B1	B2	S		(in pieces / bag)
1D	4	34	30	11,2	2	SIV-1D-PP-V0-ACT	25
ID	1	1.39	1.18	.44	.08	SIV-ID-PP-VU-AGI	20
2D	2	52	30	12,1	2	SIV-2D-PP-V0-ACT	25
20	2	2.05	1.18	.48	.08	31V-2D-FF-VU-AG1	20
3D	3	65	30	12,1	2	SIV-3D-PP-VO-ACT	25
30	3	2.56	1.18	.48	.08	310-3D-FF-VU-AG1	20





#### **ACT Mounting Hardware** Installation with Channel Rail Adaptors

#### **Required components:**

- I ACT Hexagon Head Bolt AS...W55
- I ACT Cover Plate GD...W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 ACT Channel Rail Adaptor CRA...W55

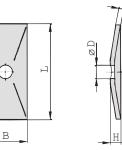
Suitable for various brands and types of channel rails (including Halfen, Hilti, Unistrut® etc.).

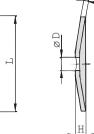
#### **Material Code** 55

#### **ACT Mounting Hardware** Material Properties and Handling Instructions

ACT Mounting Hardware is made of Stainless Steel V4A (Material Code: W55) with enhanced corrosion resistance by practically excluding metallic and non-metallic impurities during production, processing and handling.

ACT Mounting Hardware is always delivered in hermetically-sealed quality storage bags with 25 pieces each to avoid contamination during transport.


Always make sure that ACT Mounting Hardware is stored separately from carbon steel and any other metals, and that appropriate tools are used to assemble the clamps. Details: www.stauff.com/act/assembly


#### **ACT Cover Plate** Type GD ... W55

3D

3



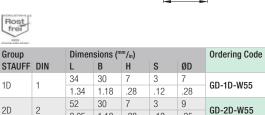




Ε

S

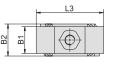


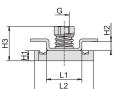

**ACT Hexagon Head Bolt** 

Type AS ... W55 (according to DIN 931 / 933)



Dimensions applicable only when used with Cover Plate GD and Weld Plate SP

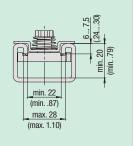

Group STAUFF	DIN	Dimensions ( ^{mm} / _{in} ) Thread G x L	Ordering Code	Packaging Unit (in pieces / bag)
1D	1	M6 x 35 M6 x 1.38	AS-M6x35-W55	25
2D	2	M8 x 35 M8 x 1.38	AS-M8x35-W55	25
3D	3	M8 x 45 M8 x 1.77	AS-M8x45-W55	25




Dimen	sions ( ^m	^m /in)			Ordering Code	Packaging Unit
L	В	Н	S	ØD		(in pieces / bag)
34	30	7	3	7	GD-1D-W55	25
1.34	1.18	.28	.12	.28	GD-1D-W55	20
52	30	7	3	9	GD-2D-W55	25
2.05	1.18	.28	.12	.35	GD-2D-W00	20
65	30	7	3	9	GD-3D-W55	25
2.56	1.18	.28	.12	.35	GD-3D-W00	20

#### **Channel Rail Adaptor Type CRA ... W55**








#### **Suitability Chart for ACT Channel Rail Adaptors** in the Twin Series

The STAUFF Channel Rail Adaptor, type CRA, is suitable for various brands and types of channel rails (including Halfen, Hilti, Unistrut® etc.). The drawing describes the basic dimensional requirements for channel rails to be used with STAUFF Channel Rail Adaptors, type CRA.

In case of doubt, please do not hesitate to contact STAUFF prior to field application.



915X GYANA 255 ITTEL												
Group Dimensions ( ^{mm} / _{in} )											Order Code	Packaging Unit
STAUFF	DIN	G	L1	L2	L3	B1	B2	H1	H2	H3		(in pieces / bag)
10	4	MC	21	35	40	16	19	6	5,5	20,5	CRA-1-8/1D-M-W55	25
1D	I	M6	.83	1.38	1.57	.63	.75	.24	.22	.81	CRA-1-8/ ID-IN-W00	20
2D	2	M8	21	35	38	53	19	9	5,5	23,5	CRA-2-3D-M-W55	25
3D	3	IVIO	.83	1.38	1.50	2.09	.75	.35	.22	.93	GRA-2-3D-INI-W35	20





#### **ACT Mounting Hardware** Installation in Field Trays / Cable Ladders

#### **Required components:**

0

**All-Metal Self-Locking ACT Nut** 

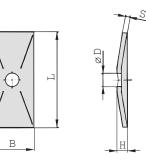
Type MUS-HKS ... W55 (similar to DIN 980 / Biloc)

- 1 ACT Self-Locking Nut MUS-HKS ... W55
- I ACT Cover Plate GD ... W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 ACT Hammerhead Bolt HKS ... W55

Suitable for commonly used field trays and cable ladders with diagonal, lengthwise and/or crosswise slots and perforations.

For use with ACT Hammerhead Bolts HKS ... W55

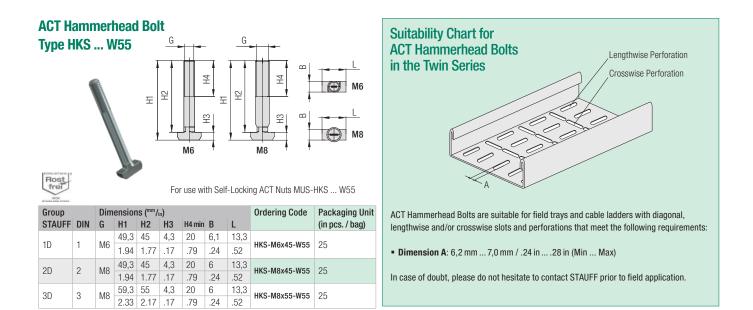
#### Material Code **ACT Mounting Hardware** h Material Properties and Handling Instructions


ACT Mounting Hardware is made of Stainless Steel V4A (Material Code: W55) with enhanced corrosion resistance by practically excluding metallic and non-metallic impurities during production, processing and handling.

ACT Mounting Hardware is always delivered in hermetically-sealed quality storage bags with 25 pieces each to avoid contamination during transport.

Always make sure that ACT Mounting Hardware is stored separately from carbon steel and any other metals, and that appropriate tools are used to assemble the clamps. Details: www.stauff.com/act/assembly

#### **ACT Cover Plate** Type GD ... W55






Group		Dimensior	IS ( ^{mm} /in)		Ordering Code	Packaging Unit
STAUFF	STAUFF DIN		Н	Hex		(in pieces / bag)
1D	4	M6	5	10	MUS-HKS-M6-W55	25
ID	1	.20 .3		.39	102-02-100-0022	20
2D	2	M8	6,5	13	MUS-HKS-M8-W55	25
3D	3	WIO	.26	.51	WU2-UV2-W9-M92	20

Hex

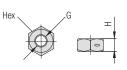
DYANG COS UTUES								
Group		Dimen	sions ("	^{im} /in)		Ordering Code	Packaging Unit	
STAUFF DIN		L	В	Н	S	ØD		(in pieces / bag)
1D	4	34	30	7	3	7	GD-1D-W55	25
ID	1	1.34	1.18	.28	.12	.28	GD-1D-W55	20
2D	2	52	30	7	3	9	GD-2D-W55	05
ZD	2	2.05	1.18	.28	.12	.35	GD-2D-W55	25
20	2	65	30	7	3	9	GD-3D-W55	05
3D	3	2.56	1.18	.28	.12	.35	GD-3D-W55	25







#### 0


#### ACT Mounting Hardware Multi-Level Installation (with Stacking & Hammerhead Bolts)

Required components (for a recommended maximum of two levels in total):

- 1 ACT Self-Locking Nut MUS-HKS ... W55
- 1 ACT Cover Plate GD ... W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 ACT Stacking Bolt AF-HKSK...W55
- I ACT Safety Locking Plate SIV...ACT
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 ACT Hammerhead Bolt HKSK ... W55

#### All-Metal Self-Locking ACT Nut Type MUS-HKS ... W55 (similar to DIN 980 / Biloc)



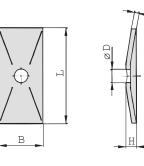




For use with ACT Stacking Bolts AF-HKS ... W55

Group		Dimensior	IS ( ^{mm} /in)		Ordering Code	Packaging Unit
STAUFF	DIN	Thread G	Н	Hex		(in pieces / bag)
1D	4	M6	5	10	MUS-HKS-M6-W55	25
ID	1	IVIO	.20	.39	102-042-100-0022	20
2D	2	M8	6,5	13	MUS-HKS-M8-W55	25
3D	3	IVIO	.26	.51	พบอ-ทหอ-เฟช-พวว	20

#### ACT Mounting Hardware W555 Material Properties and Handling Instructions


ACT Mounting Hardware is made of Stainless Steel V4A (Material Code: W55) with enhanced corrosion resistance by practically excluding metallic and non-metallic impurities during production, processing and handling.

ACT Mounting Hardware is always delivered in hermetically-sealed quality storage bags with 25 pieces each to avoid contamination during transport.

Always make sure that ACT Mounting Hardware is stored separately from carbon steel and any other metals, and that appropriate tools are used to assemble the clamps. <u>Details: www.stauff.com/act/assembly</u>

#### ACT Cover Plate Type GD ... W55







Group		Dimen	sions ("	^{ım} /in)		Ordering Code	Packaging Unit	
STAUFF DIN		L	В	Н	S	ØD		(in pieces / bag)
1D	4	34	30	7	3	7	GD-1D-W55	25
ID		1.34	1.18	.28	.12	.28	GD-1D-W55	20
2D	2	52	30	7	3	9	GD-2D-W55	0.5
20	2	2.05	1.18	.28	.12	.35	GD-2D-W00	25
20	2	65	30	7	3	9		05
3D	3	2.56	1.18	.28	.12	.35	GD-3D-W55	25

#### ACT Stacking Bolt Type AF-HKSK ... W55



G

M6

M8

M8

Dimensions (mm/in)

L1

49

1.93

50

1.97

2.40 1.81 .59

61

L2

35

37

46

1.38 .47

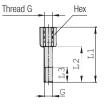
1.47 .43

Rost

Group

1D

2D


3D

STAUFF DIN

1

2

3



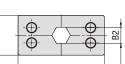
For use with Self-Locking ACT Nuts MUS-HKS ... W55

Order Code

AF-HKSK-1D-M-W55 25

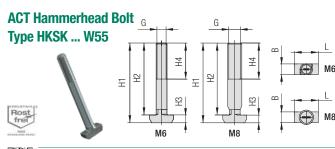
AF-HKSK-2D-M-W55 25

AF-HKSK-3D-M-W55 25


Packaging Unit

(in pieces / bag)

ACT Safety Locking Plate Type SIV ... ACT








Made of flame-retardant PP-VO plastic material; tested and VO classified according to UL 94

Group		Dimens	ions ( ^{mm} )	/in)		Order Code	Packaging Unit
STAUFF	DIN	L	B1	B2	S		(in pieces / bag)
1D	4	34	30	11,2	2	SIV-1D-PP-V0-ACT	25
ID	I	1.39	1.18	.44	.08	SIV-ID-PP-VU-AGI	20
2D	2	52	30	12,1	2	SIV-2D-PP-VO-ACT	25
20	2	2.05	1.18	.48	.08	31V-2D-FF-VU-AG1	20
3D	3	65	30	12,1	2	SIV-3D-PP-VO-ACT	25
30	3	2.56	1.18	.48	.08	31V-3D-FP-VU-AG1	20



L3 min. Hex

11

.43

12

.47

12

.47

12

11

15

Group		Dim	ension	Ordering Code	Packaging Unit					
STAUFF	DIN	G	H1	H2	H3	H4 min	В	L		(in pcs. / bag)
10	4	M6	29,3	25	4,3	20	6,1	13,3	HKSK-M6x25-W55	05
1D	I	IVIO	1.15	.98	.17	.79	.24	.52	UV2V-INIOX75-M32	20
2D	2	M8	32,3	28	4,3	20	6	13,3	HKSK-M8x28-W55	25
20	2	IVIO	1.27	1.10	.17	.79	.24	.52	UV2V-IN9X79-M00	
20	0	M8	42,3	38	4,3	20	6	13,3	HKSK-M8x38-W55	05
3D	3	IVIO	1.67	1.50	.17	.79	.24	.52		20

	-	-	
	×		
L	υ,		





**All-Metal Self-Locking ACT Nut** 

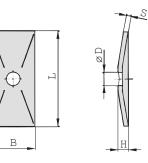
Type MUS-HKS ... W55 (similar to DIN 980 / Biloc)

#### ACT Mounting Hardware Multi-Level Installation in Field Trays / Cable Ladders (with Hammerhead Bolts)

Required components (for a recommended maximum of two levels in total):

- 1 ACT Self-Locking Nut MUS-HKS ... W55
- 1 ACT Cover Plate GD ... W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 ACT Safety Locking Plate SIV-ACT
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 ACT Hammerhead Bolt HKSV ... W55

#### ACT Mounting Hardware W555 Material Properties and Handling Instructions


ACT Mounting Hardware is made of Stainless Steel V4A (Material Code: W55) with enhanced corrosion resistance by practically excluding metallic and non-metallic impurities during production, processing and handling.

ACT Mounting Hardware is always delivered in hermetically-sealed quality storage bags with 25 pieces each to avoid contamination during transport.

Always make sure that ACT Mounting Hardware is stored separately from carbon steel and any other metals, and that appropriate tools are used to assemble the clamps. <u>Details: www.stauff.com/act/assembly</u>

#### ACT Cover Plate Type GD ... W55





Rost frei

M6

M8

Group		Dimen	sions ("	^{ım} /in)			Ordering Code	Packaging Unit
STAUFF	DIN	L	В	H	S	ØD	Ū	(in pieces / bag)
1D	4	34	30	7 3 7 00 10 1	GD-1D-W55	25		
ID	1	1.34	1.18	.28	.12	.28	GD-1D-W55	20
2D	2	52	30	7	3	9	GD-2D-W55	25
20	2	2.05	1.18	.28	.12	.35	GD-2D-W00	20
3D	3	65	30	7	3	9	GD-3D-W55	25
30	3	2.56	1.18	.28 .12 .35		GD-3D-W55	20	



For use with ACT Hammerhead Bolts HKS ... W55

Group		Dimension	IS ( ^{mm} /in)		Ordering Code	Packaging Unit	
STAUFF	DIN	Thread G	Н	Hex		(in pieces / bag)	
1D	4	M6	5	10	MUS-HKS-M6-W55	25	
ID	1	INIO	.20	.39	103-003-0033	20	
2D	2	M8	6,5	13		05	
3D	3	IVIO	.26	.51	MUS-HKS-M8-W55	25	

Hex

# ACT Hammerhead Bolt Type HKSV ... W55

M6



For use with Self-Locking ACT Nuts MUS-HKS ... W55

M8

Group		Dim	ensior	Ordering Code	Packaging Unit					
STAUFF	· · ·		H1	H2	n) H3	H4 min	В	L	ordering code	(in pcs. / bag)
1D	4	MG	76,3	72	4,3	20	6,1	13,3	HKSV-M6x72-W55	05
ID	I	M6	3.00	2.83	.17	.79	.24	.52	HK5V-M6X72-W55	25
2D	2	M8	77,3	73	4,3	20	6	13,3	HKSV-M8x73-W55	05
20	2	IVIO	3.04	2.87	.17	.79	.24	.52	HK3V-INIOX73-W33	20
3D	3	M8	97,3	93	4,3	20	6	13,3	HKSV-M8x93-W55	25
30	3	IVIO	3.83	3.66	.17	.79	.24	.52	UL9A-INQX83-M99	20

#### ACT Safety Locking Plate Type SIV ... ACT



B2

Ð

Ð



Made of flame-retardant PP-VO plastic material; tested and VO classified according to UL 94

Group		Dimens	ions ( ^{mm} )	/in)		Order Code	Packaging Unit
STAUFF	DIN	L	B1	B2	S		(in pieces / bag)
1D	4	34 30 11,2 2	SIV-1D-PP-V0-ACT	25			
ID	1	1.39	1.18	.44	.08	SIV-ID-PP-VU-AGI	20
2D	2	52 30 12,1 2	SIV-2D-PP-VO-ACT	25			
20	2	2.05	1.18	.48	.08	51V-2D-PP-VU-AG1	20
20	2	65	30	12,1	2	SIV-3D-PP-VO-ACT	25
3D	3	2.56	1.18	.48	.08	SIV-3D-PP-VU-AGT	25





## STAUFF ACT Clamps: Anti-Corrosion Technology

#### Multi-Level Installation (with Weld Plate)

Required components (for each level) for a maximum of two levels in total:

1 Stacking Bolt AF...W55

- 1 Safety Locking Plate SIG...W55
- 1 ACT Clamp Body (2 Clamp Halves)

The upper layer has to be secured by a cover plate and hexagon head bolts. The lower level has to be mounted to a weld plate.

#### **Order Code**

#### 110/10-ACT-SIV-ACT-AF-M-W55

W55 is the recommended option for metal hardware to be used with STAUFF ACT Clamps.



**Order Code** 

#### Installation with Channel Rail Adaptors

Required components:

1 Hexagon Head Bolt AS...W55

Installation on Weld Plate

1 Hexagon Head Bolt AS...W55 1 Cover Plate GD...W55

1 Single Weld Plate SP...W55

1 ACT Clamp Body (2 Clamp Halves)

Before welding, always make sure that

is suitable for the expected loads.

the designated position of the weld plate

Required components:

- 1 Cover Plate GD...W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 Channel Rail Adaptor CRA...W55

Suitable for various brands and types of channel rails (including Halfen, Hilti, Unistrut® etc.).



#### Installation in Field Trays / Cable Ladders

Required components:

- 1 Self-Locking Nut MUS-HKS ... W55
- 1 Cover Plate GD ... W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 Hammerhead Bolt HKS ... W55

Suitable for commonly used field trays and cable ladders with diagonal, lengthwise and/or crosswise slots and perforations.

#### **Order Code**

#### CRA-110/10-ACT-GD-AS-M-W55

W55 is the recommended option for metal hardware to be used with STAUFF ACT Clamps.



#### **Multi-Level Installation** in Field Trays / Cable Ladders

Required components (for a maximum of two levels in total):

- 1 Self-Locking Nut MUS-HKS ... W55
- 1 Cover Plate GD ... W55
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 Stacking Bolt AF-HKSK...W55
- 1 Safety Locking Plate SIV...ACT
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 Hammerhead Bolt HKSK ... W55

Suitable for commonly used field trays and cable ladders with diagonal, lengthwise and/or crosswise slots and perforations.

#### **Order Codes**

Upper Level: HKSK-212.7/12.7-ACT-GD-MUS-M-W55 Lower Level: 212.7/12.7-ACT-SIV-ACT-AF-HKSK-M-W55

W55 is the recommended option for metal hardware to be used with STAUFF ACT Clamps.

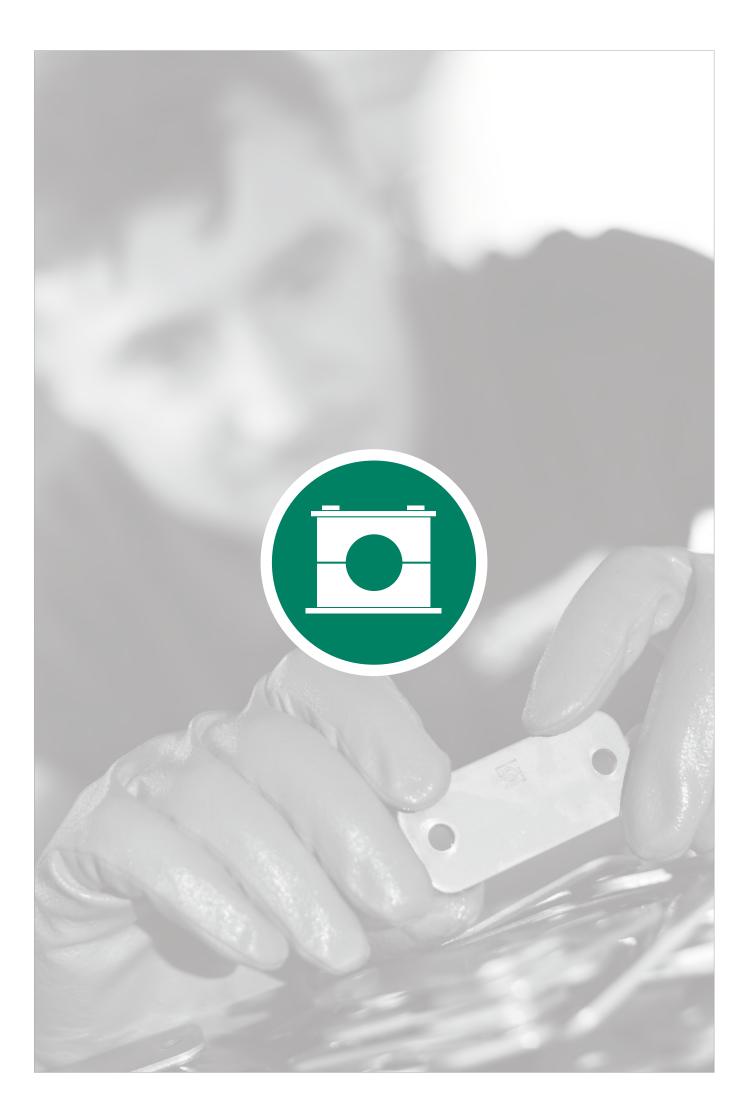


**Order Code** 

#### **Multi-Level Installation** in Field Trays / Cable Ladders

Required components (for a maximum of two levels in total):

1 Self-Locking Nut MUS-HKS ... W55


- 1 Cover Plate GD ... W55 1 ACT Clamp Body (2 Clamp Halves)
- 1 Safety Locking Plate SIV-ACT
- 1 ACT Clamp Body (2 Clamp Halves)
- 1 Hammerhead Bolt HKSV ... W55

Suitable for commonly used field trays and cable ladders with diagonal, lengthwise and/or crosswise slots and perforations.

#### **Order Codes**

#### Upper Level: HKSV-212.7/12.7-ACT-GD-MUS-M-W55 Lower Level: 212.7/12.7-ACT-SIV-ACT

W55 is the recommended option for metal hardware to be used with STAUFF ACT Clamps.





	Introduction	92
÷	Weld Stud with Female Thread SWG-SF	92
9	Distance Plate for DIN 3015 Clamps SWG-DIP	93
	Cable Tie Holder SWG-CTH-11-M6	93
	Cable Tie / Tension Belt Holder SWG-CTH-30-M6-1	93
	Cable Tie / Tension Belt Holder SWG-CTH-30-M6-2	93
	Starterkit SWG-WI06-Starterkit	94
	Weld Inverter SWG-WI06	94
A	Weld Gun - Arc Ignition SWG-WG	94
C	Distance Adaptor SWG-AGS	95
	Distance Tube DIT-SR6-SWG	95
	Stud Retainer SWG-SR6	95
	Ground Cable SWG-GC	95



#### **STAUFF SWG Stud Welding System**

In many areas, stud welding is considered to be the most economic fastening method for components and is sometimes even the only technically feasible solution. Because the stud is joined with the substructure over the entire surface of the stud, a high strength of the ioint can be achieved.

STAUFF is now using this proven principle for the installation of pipe, tube, hose and cable clamps in the Standard Series (according to DIN 3015, part 1) as well as in the Twin Series (according to DIN 3015, part 3) with M6 mounting thread, where female threaded weld studs replace the regular weld plates; distance plates made from plastic provide the necessary spacing between the clamp bodies and the substructure.

If required, the system can also be adopted for alternative fastening methods, e.g. for clamping belts, cable ties or conduit hoses.

In addition to the individual components - weld studs, distance plates, clamp bodies and metal hardware required - STAUFF also provides the correspondingly designed assembly tools such as the weld inverter and the weld gun with distance tube, stud retainer and distance adaptor for DIN 3015 clamps. The lightweight and compact weld inverter works without high-voltage current.

Thanks to increased productivity and flexibility for the installation of clamps, the system offers considerable savings potentials for users with significant processing volumes, especially when working in horizontal or overhead position. The amount of rework on welding locations can be significantly decreased, and material distortion is reduced to a minimum through low thermal stress

The joint of the weld stud with the substructure impresses in particular with a high degree of strength and safety, which is at least at the same level as for regular weld plates.

- Developed and optimised to the functions of original STAUFF Clamps in the Standard Series (DIN 3015, Part 1)
- Versatile combination and adaptation options available (e.g. fastening elements for conduit hoses, clamping belts and cable ties)
- All installation options are fully covered by only one weld stud
- Significant time and cost savings by a quicker welding process and reduced rework on welding locations
- Material distortion reduced to a minimum through low thermal stress (particularly significant when handling thin metal sheets)
- High degree of safety and protection against corrosion due to a welded joint over the whole surface
- Lightweight and compact designed welding inverter
- By default no shielding gas or ceramic ferrule required
- Works without high-voltage current

**Ordering Codes** 

* Weld Stud with Female Thread

Weld Stud

* Thread code

* Material code

#### Weld Stud with Female Thread **Type SWG-SF**



Metric ISO thread

(DIN EN ISO 4042)

Steel 4.8 with galvanised copper coating C1E

W124

Unified coarse

(UNC) thread



Assembly using weld plates

100%

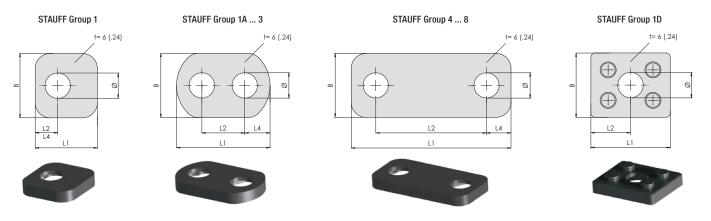


Alternative materials are available upon request. Please contact STAUFF for further information.

Maximum torque rating: 6 N·m / 4.43 ft·lb. Specific series can further limit the torque rating. The maximum loads in pipe direction listed on page 161 reduce accordingly. In case of doubt, please contact STAUFF in advance.



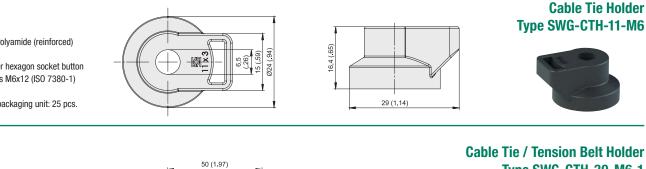
#### **Reduction of the** assembly time per clamp*




*For a typical assembly procedure in production environments.






#### **Distance Plate for DIN 3015 Clamps Type SWG-DIP**



Group		Pipe/Tube-Ø (mm/in)	Dimen	sions (m	ⁿ /in)			Order Codes	Packaging Units	
STAUFF	DIN	Clamp Body	L1	L2*	L4	В	Ø	(Standard Options)	(in pcs. / per bag)	Ordering Codes
1	0	6 12	29	10,5	10,5	30	11,8	SWG-DIP-1-PP-BK	25	
1	0	.2448	1.14	.41	.41	1.18	.46	3WU-DIF-I-FF-DK	20	Distance Plate *SWG-DIP*
1A	4	6 12	43,5	20	11,8	30	11,8	SWG-DIP-1A-PP-BK	25	
IA		.2448	1.71	.79	.46	1.18	.46	3WU-DIF-IA-FF-DK	25	* Distance Plate
2	2	12,7 18	48,5	26	11,3	30	11,8	SWG-DIP-2-PP-BK	25	
2	2	.5071	1.90	1.02	.44	1.18	.46	SWG-DIP-2-PP-DK	20	* STAUFF Group
3	3	19 25,4	56,5	33	11,8	30	11,8	SWG-DIP-3-PP-BK	25	
3	3	.75 1.00	2.22	1.30	.46	1.18	.46	SWG-DIP-3-PP-DK	20	* Material code Polypropylene (Colour: Black)
4	4	26,9 32	26,932 62 40 11 30 11,8 cmc pip 4 pp pr	25						
4	4	1.06 1.26	2.44	1.57	.43	1.18	.46	SWG-DIP-4-PP-BK	-FF-DK 20	
5	5	32 42	75	52	11,5	30	11,8	SWG-DIP-5-PP-BK 25	25	
5	5	1.26 1.65	2.95	2.05	.45	1.18	.46	SWG-DIP-D-PP-DK	20	
6	6	44,5 54	88	66	11	30	11,8	SWG-DIP-6-PP-BK	25	
0	0	1.75 2.12	3.46	2.60	.43	1.18	.46	SWG-DIP-0-PP-DK	20	
7	7	57,2 76,1	121	94	13,5	30	11,8	SWG-DIP-7-PP-BK	10	
1	1	2.25 3.00	4.76	3.70	.53	1.18	.46	SWU-DIF-/-FF-DK	10	
8	8	88,9 102	147	120	13,5	30	11,8	SWG-DIP-8-PP-BK	10	
0	0	3.50 4.00	5.78	4.72	.53	1.18	.46		10	
1D	4	6 12	37	18,5	- 30 11,8 CMC DID 10 DD	SWG-DIP-1D-PP-BK	25			
U	1	.2448	1.45	.73	-	1.18	.46	SWG-DIF-ID-FF-BK	25	

Alternative materials are available upon request. Please contact STAUFF for further information.


* ±0,1(.003)



Ø6,6



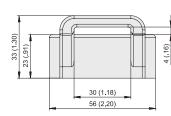
Type SWG-CTH-30-M6-2



F

*SWG-DIP*2*PP-BK

SWG-DIP


PP-BK

2

Material: Polyamide (reinforced)

Suitable for hexagon socket button cap screws M6x12 (ISO 7380-1)

Standard packaging unit: 25 pcs.



Material: Polyamide (reinforced)

Suitable for socket cap screws M6x12 (ISO 4762) or hexagon socket button cap screws M6x12 (ISO 7380-1)

Standard packaging unit: 25 pcs.

Dimensional drawings: All dimensions in mm (in).

www.stauff.com/1/en/#93

Catalogue 1 - Edition 08/2022

30 (1.18)





#### Starterkit including:

- 1 Weld Inverter SWG-WI06
- 1 Weld Gun SWG-WG
- 1 Ground Cable SWG-GC
- 1 Distance Tube DIT-SR6-SWG-WG30 (for STAUFF Groups 2 to 8)
- 5 Stud Retainer SWG-SR6
- 1 Toolkit (Box Spanner/Hex Wrench)
  Operating Manual (English / German)

#### **Required Accessories:**

Distance Adaptor SWG-AGS-... for DIN 3015 Clamps

R

STALIFI

- Weld Stud SWG-SF
- Distance Tube DIT-SR6-SWG-WG25
- (for STAUFF Group 1A, if required)

F

Weld Inverter Type SWG-WI06

#### **Characteristics**

- Works without high-voltage current
- No heavy extension cords required
- Extremely powerful and robust
- Compact in design
- Lightweight with only 18 kg / 40 lbs
- Welding current: 100 ... 650 A (stepless control)
- Welding time: 5 ... 200 ms (stepless control)
- Connection Cable: 3 m / 9.84 ft

#### **Required Accessories**

Weld Gun SWG-WG and Accessories
 Ground Cable SWG-GC

#### **Technical Data**

#### Primary Power

- 100 V to 240 V, 1 phase, 50/60 Hz, 16 AT
- Primary Plug
- 16 A 2-pin grounded safety plug (plug type F CEE 7/4)

#### IP Code

- IP 44 (also permits operation outdoors)
- **Ambient Temperature Limits** ■ ±0 °C ... +40 °C / +32 °F ... +104 °F
- **Dimensions** (L x W x H)
- 474 x 337 x 351 mm / 18.66 x 13.27 x 13.82 in

#### Weld Gun - Arc Ignition Type SWG-WG



#### **Characteristics**

- Compact in design
- Lightweight with only 0,8 kg / 1.8 lbs (without cable)
- Ergonomic handle
- Comfortable setup
  Connection Cable: 5 m / 16.40 ft
- **Required Accessories**
- Distance Adaptor SWG-AGS-... for DIN 3015 Clamps
- Distance Tube DIT-SR6-SWG-WG30 (for STAUFF Groups 2 to 8)
- Distance Tube DIT-SR6-SWG-WG25 (for STAUFF Group 1A)
- Stud Retainer SWG-SR6

#### **Technical Data**

#### Lift

- Adjustment range 3 mm / .11 in, lockable
- Workplace noise level • Up to 90 dB (A) may occur during welding
- Dimensions (L x W x H)
- 200 x 65 x 140 mm / 7.87 x 2.56 x 5.51 in (without cable, without distance tube)

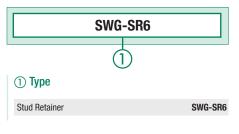
### Distance Adaptor Type SWG-AGS

Group			
STAUFF	DIN	for use with	Ordering Codes
1	0	Distance Tube Type A	NO DISTANCE ADAPTOR REQUIRED
1A	1	Distance Tube Type A	SWG-AGS-1A
2	2	Distance Tube Type B	SWG-AGS-2
3	3	Distance Tube Type B	SWG-AGS-3
4	4	Distance Tube Type B	SWG-AGS-4
5	5	Distance Tube Type B	SWG-AGS-5
6	6	Distance Tube Type B	SWG-AGS-6
7	7	Distance Tube Type B	SWG-AGS-7
8	8	Distance Tube Type B	SWG-AGS-8
1D	1D	Distance Tube Type A	NO DISTANCE ADAPTOR REQUIRED

®

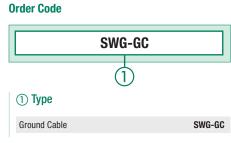
STAUFF




#### Distance Tube Type DIT-SR6-SWG

Туре	for use with	Ordering Codes
A	Distance Adaptor SWG-AGS-1A	DIT-SR6-SWG-WG25
В	Distance Adaptor SWG-AGS-28	DIT-SR6-SWG-WG30



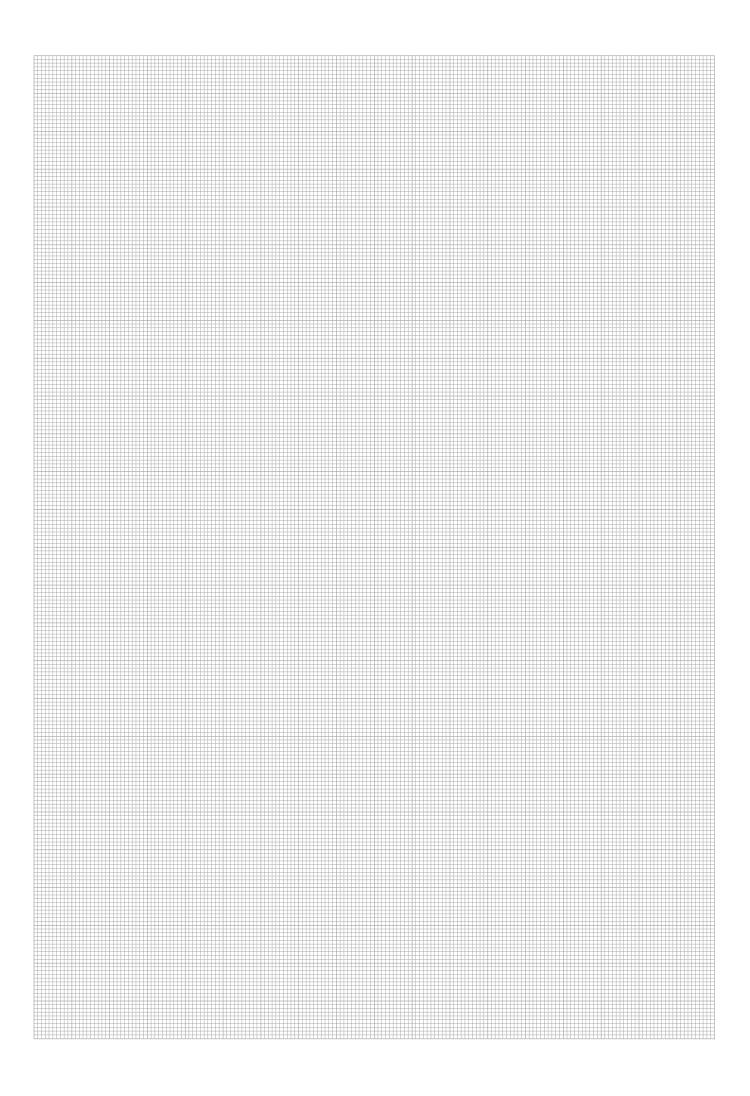

Stud Retainer Type SWG-SR6

#### **Order Code**

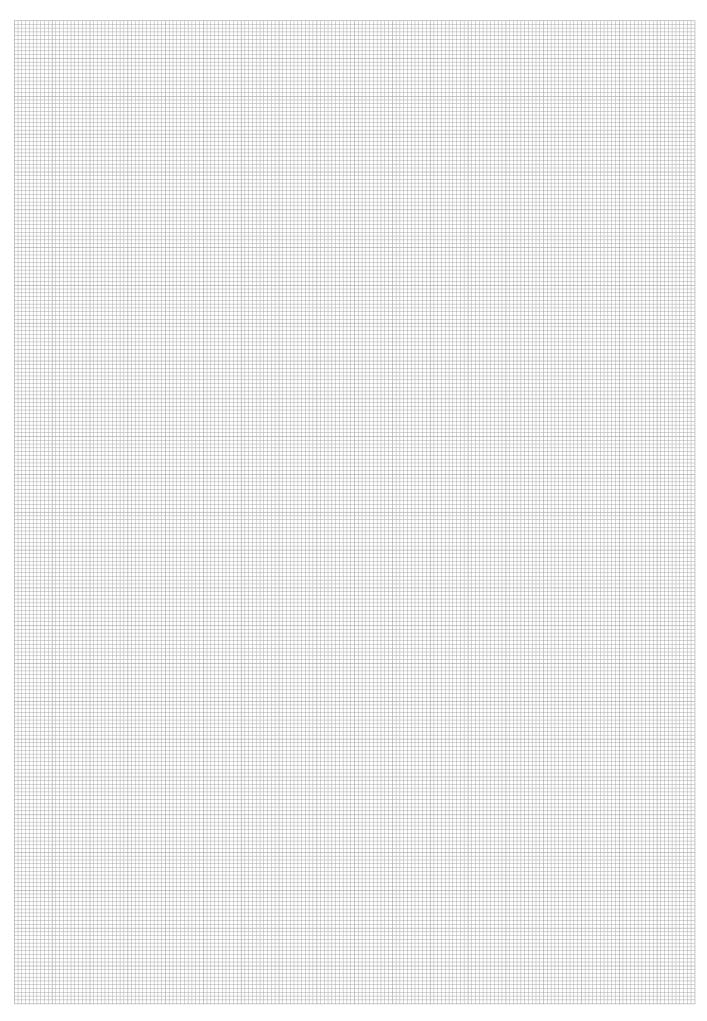


Standard packaging unit: 5 pcs.

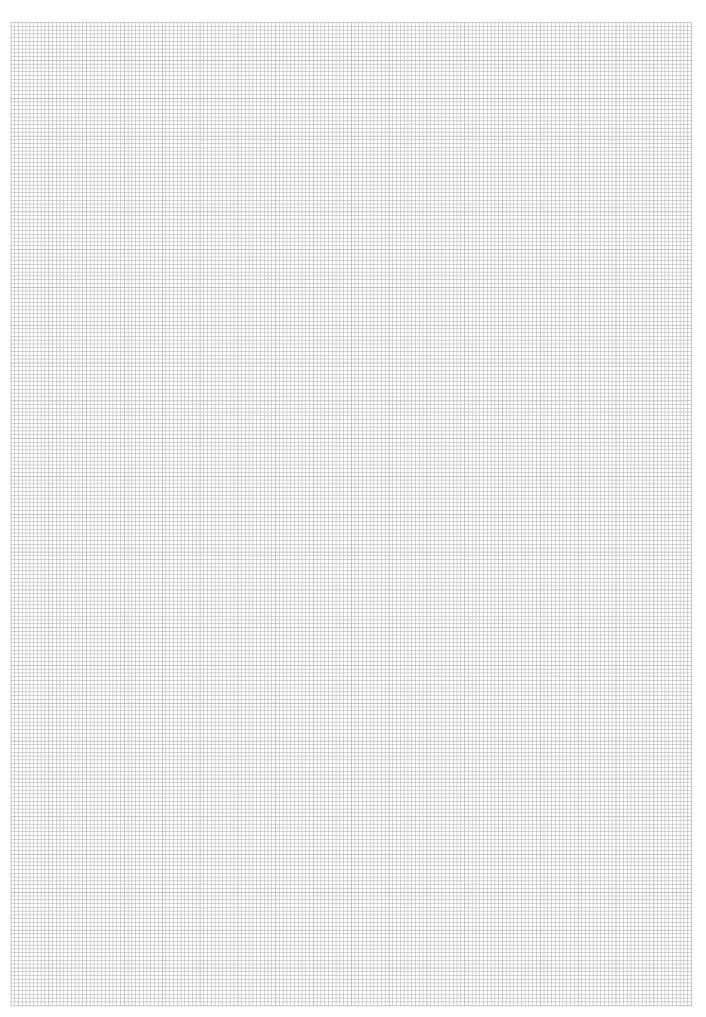
Ground Cable Type SWG-GC




#### Characteristics

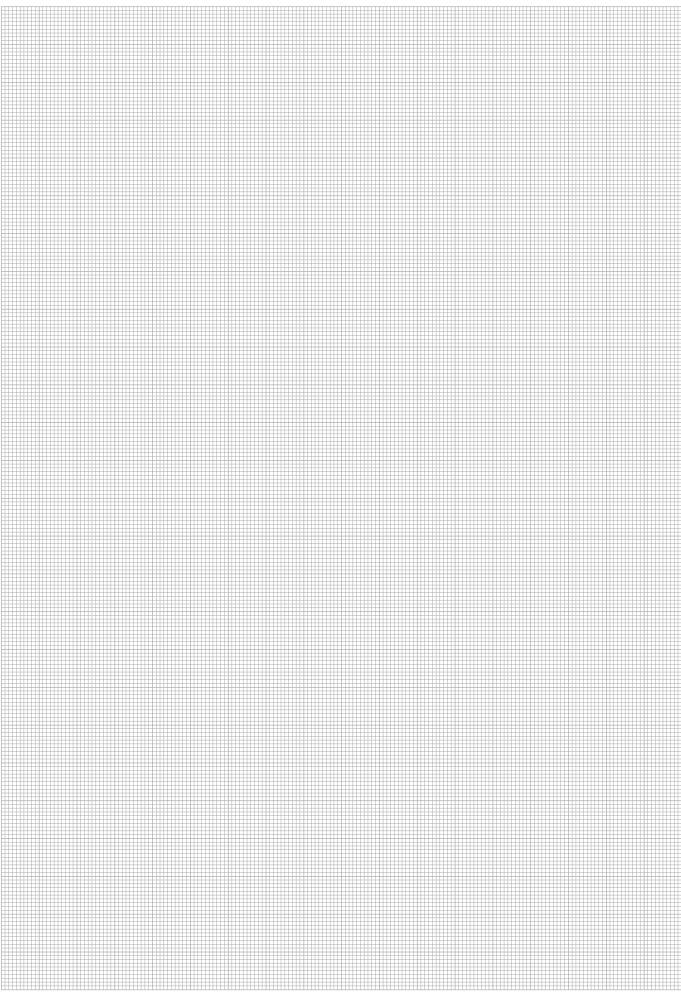

Cable length: 5 m / 16.40 ft
Equipped with 2 vice grips 10"




F

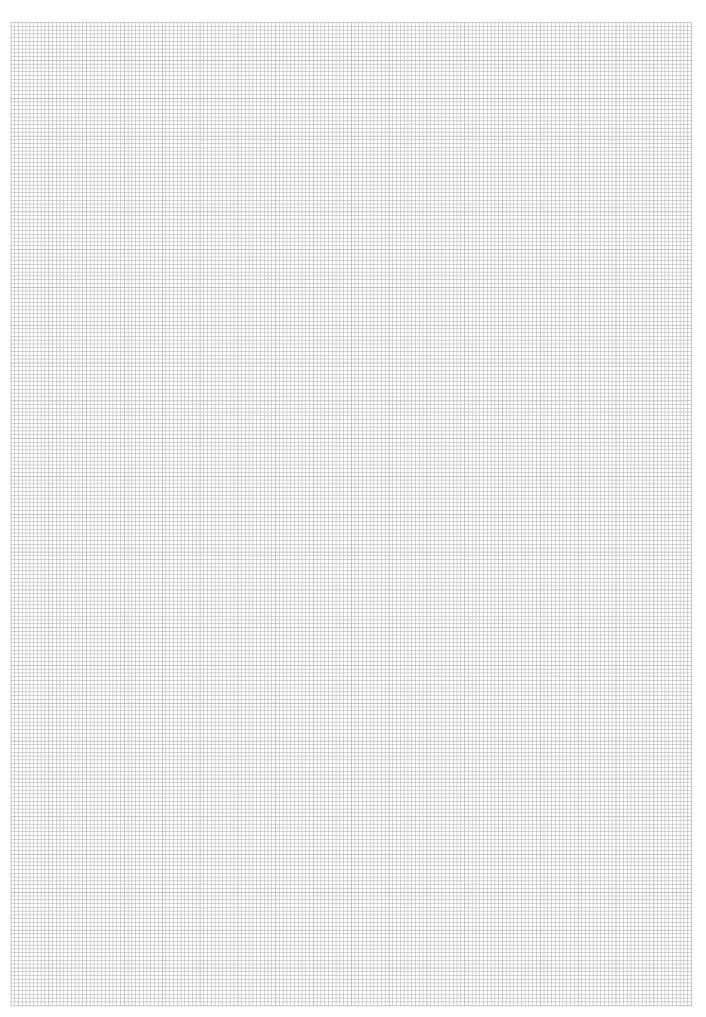






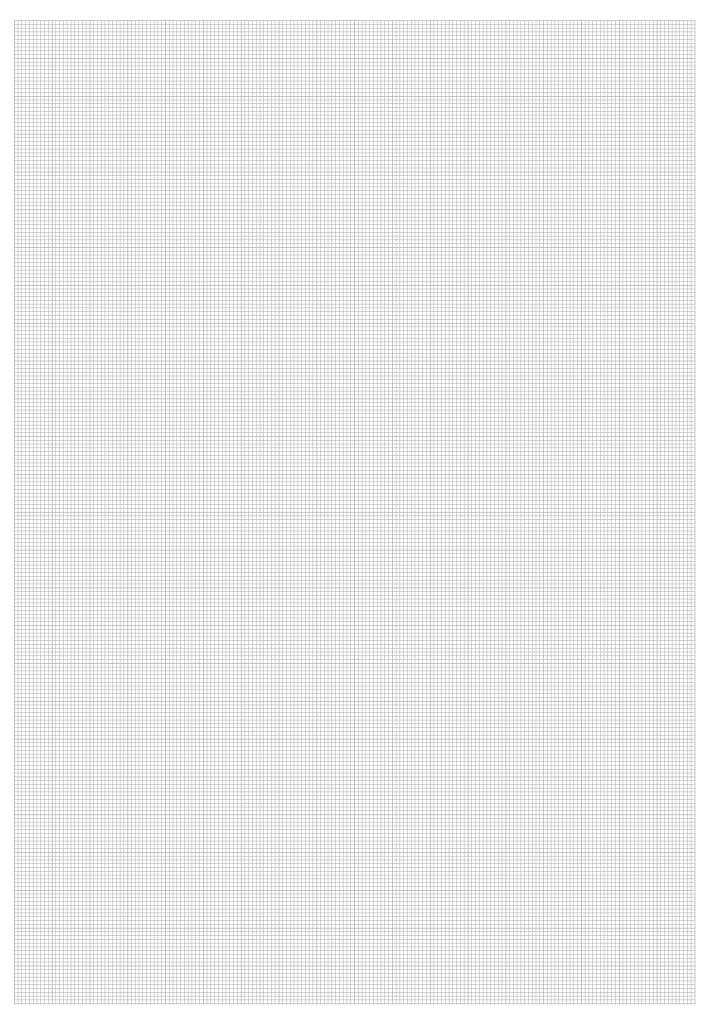


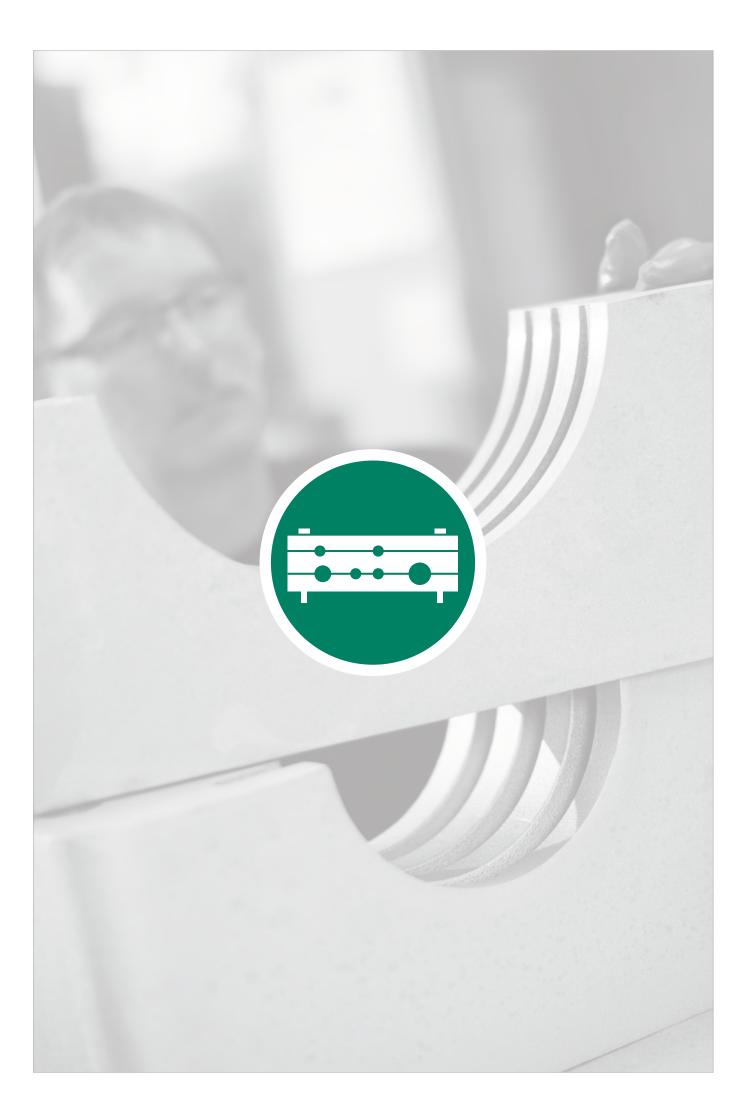




G






**Notes** 






G









3000	Machined Versions	104
····	Injection Moulded Version	106
	Metal Versions and Accessories	107
	Enquiry Form for Custom-Designed Special Clamps	108





#### **Machined Versions**

Custom-designed clamping systems for pipes, tubes, hoses, cables and other components according to customer's specifications or based on STAUFF developments, made of thermoplastics, metals and non-ferrous metals.













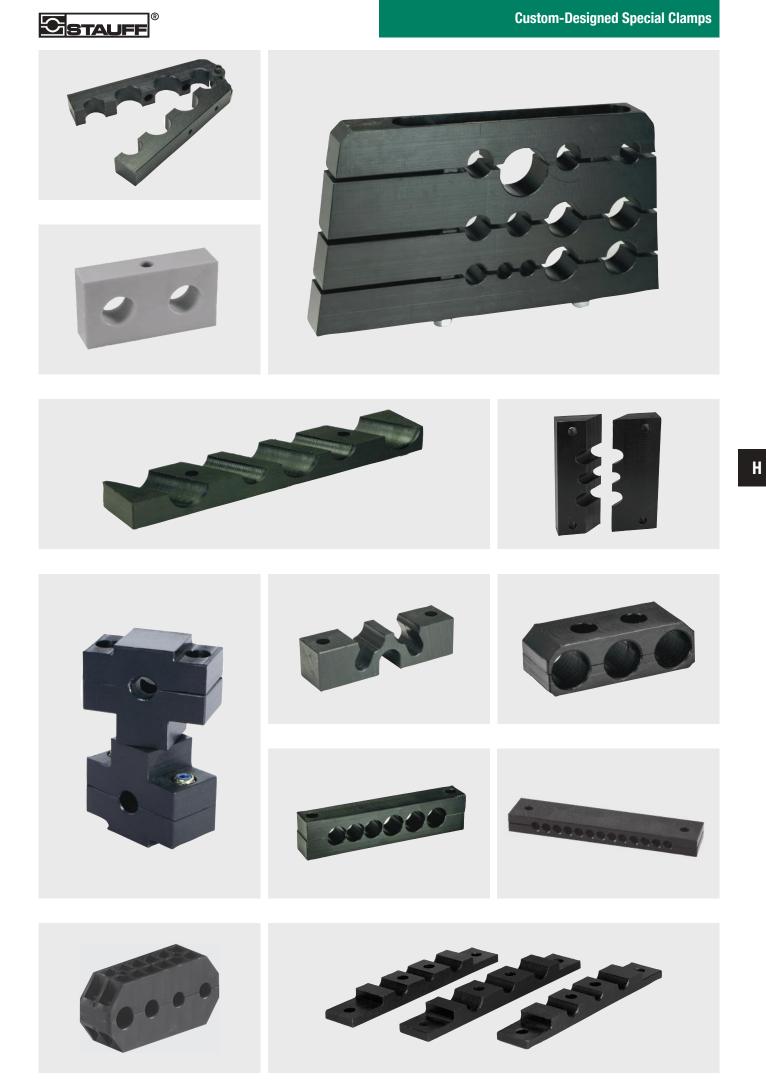























# **STAUFF**[®]

#### Injection Moulded Versions (Flexi Clamps)

Custom-designed clamping systems for pipes, tubes, hoses, cables and other components according to customer's specifications or based on STAUFF developments, made of Polypropylene, Polyamide and other thermoplastics.







Photo Source: mm-fotowerbung.de















Catalogue 1 - Edition 08/2022

H







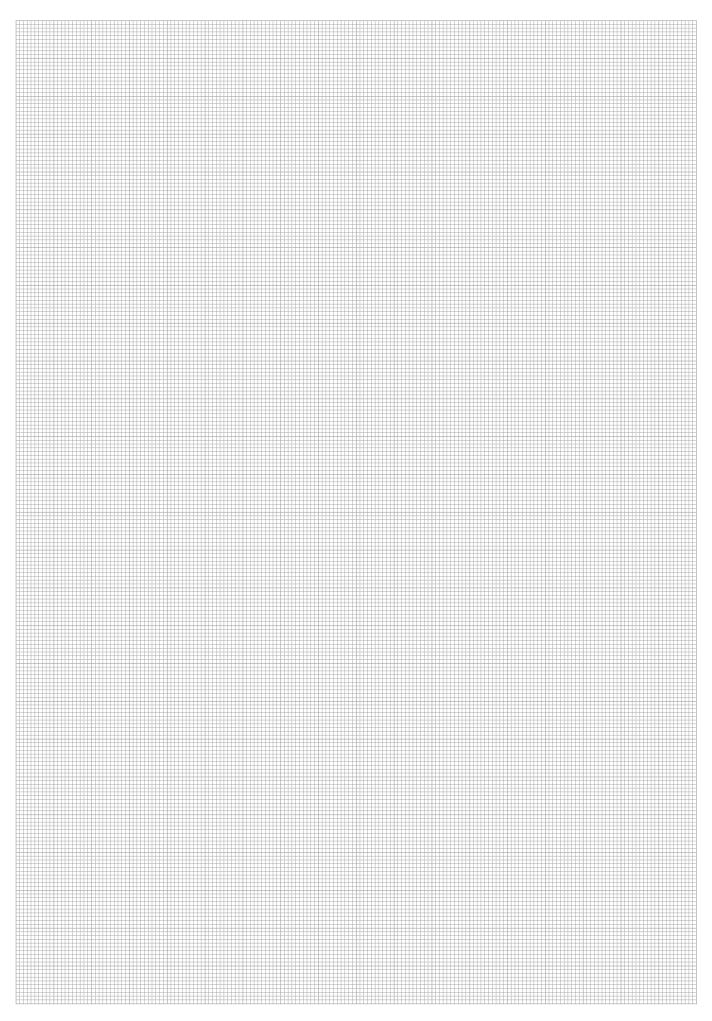




H



# **Enquiry Form for Custom-Designed Special Clamps**


Please use the following form as a guideline when preparing an enquiry for a custom-designed special clamp. Scan or copy the page from the catalogue, print and complete it with

**Application Information** 

as much information as possible, before sending it by email of fax to the closest STAUFF branch office. If possible, please also provide a sketch / drawing and let us know the quantities required, and if the enquiry is for a one-time or recurring demand. We look forward to hearing from you, and are always available for consultation, when required.

Area of use	Indoor	Outdoor
Ambient temperature	Lowest 🗆 °C / 🗖 °F	Highest □ °C / □ °F
Resistance against particular media	□ No	<ul> <li>☐ Yes</li> <li>☐ Mineral oils</li> <li>☐ Other oils</li> <li>☐ Benzine</li> <li>☐ Weak acids</li> <li>☐ Solvents</li> <li>☐ Alcohols</li> <li>☐ Seawater</li> <li>☐ Other media</li> </ul>
Fire protection requirements	□ No	□ Yes □ UL94 □ BS 6853 □ Other standard
Material preference for the clamp body	y □ Polypropylene □ Aluminium □ Stainless Steel □ V2A □ V4A	Polyamide Steel Other material
Design Information		
Type of line	Pipe / tube ( <u>fixed</u> installation)     Hose     Cable     Other components	<ul> <li>Pipe / tube (<u>sliding</u> installation)</li> <li>Conduit Hose</li> <li>Mix of different types of lines</li> </ul>
Maximum dimensions of clamp body	Length x Width x	Height 🗆 mm / 🗆 inch
Total number of lines		
Diameters per line	Line 1   mm /   inch Line 2   mm /   inch Line 3   mm /   inch Line 4   mm /   inch Line 5   mm /   inch Line 6   mm /   inch Line 7   mm /   inch Line 8   mm /   inch	Further comments         Further comments
Preferred centre distance of the lines	C	] mm / 🗆 inch
Preferred number of screw holes		
Information on Mounting Hardw	are	
Preferred type of bolts	<ul> <li>Hexagon head bolts (with cover plate)</li> <li>Socket cap crews (with cover plate)</li> <li>Socket cap crews (w/o cover plate)</li> </ul>	e) I with metric threads with UNC threads I with metric threads with UNC threads I with metric threads with UNC threads
Preferred type of installation	<ul> <li>Welding (using a weld plate)</li> <li>Direct screw-fastening</li> <li>Mounting rail (using a rail nut / adap</li> </ul>	Welding (using weld studs) Adhesive bonded fastening tor)
Material preference for the hardware	□ Steel	□ Stainless Steel □ V2A □ V4A









2	Clamp Body • Single Design LBBU	112
J	Clamp Body • Twin Design LBBU	113
-	Weld Plate LBBU-SP	114
Π	Sleeve LBBU-HUE	114
~	Cover Plate LBBU-DP	115
1	Hexagon Head Bolt AS	115
_	<b>Clamp Body • Single Design</b> LB	116
- Q 4	Clamp Body • Twin Design LBG / LBU	117
	Clamp Body • Single Design	118
	Clamp Body • Twin Design	119
	Cover Plate	119

# R

# Clamp Body - Single Design **Type LBBU**





Size 2 in slotted design

# **Ordering Codes**

Clamp Body	*LBBU-*1*06-*SA-*I	M8/U5/16
* Light Series LBB	U	LBBU
* STAUFF Group		1
* Exact outside dia	ameter Ø D1 (mm)	06
* Material code (se	ee below)	SA
* Thread code (suit	able for bolts M8 and U5/16)	M8/U5/16

# **Standard Materials**

Thermoplastic Elastomer (87 Shore-A) Colour: Black Material code: SA

See pages 154 / 155 for material properties and technical information

Alternative materials are available upon request. Please contact STAUFF for further information.

# **Product Features**

Π

- Compact and light-weight design for applications in which space is limited
- Available in 3 different sizes and covering all standard metric and imperial diameters between 4 mm and 32 mm
- · Vibration-damping and noise-reducing clamp body material with UV, ozone and weathering-resistant characteristics
- · Embedded metal sleeve to ensure stability of the clamp assembly

	Group		Diameter ube / Hose	Nominal Bore Pipe	Ordering Codes (1 Clamp Body)	Dime ( ^{mm} / _{in} )	nsions						
8/U5/16	STAUFF	(mm)	(in)	(in)		Ø D2	Ø D3	L1	L2	L3	H1	H2	В
		6			LBBU-106-SA-M8/U5/16								
LBBU		6,4	1/4		LBBU-106.4-SA-M8/U5/16								
1		8	5/16		LBBU-108-SA-M8/U5/16								
06	1	9,5	3/8		LBBU-109.5-SA-M8/U5/16	12	14	34	15	9	10	20	20
SA	1	10		1/8	LBBU-110-SA-M8/U5/16	.47	.55	1.34	.59	.35	.39	.79	.79
VI8/U5/16		11			LBBU-111-SA-M8/U5/16								
		12			LBBU-112-SA-M8/U5/16								
		12,7	1/2		LBBU-112.7-SA-M8/U5/16								
		10		1/8	LBBU-210-SA-M8/U5/16								
		11			LBBU-211-SA-M8/U5/16								
		12			LBBU-212-SA-M8/U5/16								
		12,7	1/2		LBBU-212.7-SA-M8/U5/16								
		13,5		1/4	LBBU-213.5-SA-M8/U5/16								
	0	14			LBBU-214-SA-M8/U5/16	20	14	39	18	9	12	24	20
cal	2	15			LBBU-215-SA-M8/U5/16	.47	.55	1.54	.71	.35	.47	.94	.79
oui		16	5/8		LBBU-216-SA-M8/U5/16								
		17,2		3/8	LBBU-217.2-SA-M8/U5/16								
		18			LBBU-218-SA-M8/U5/16								
		19	3/4		LBBU-219-SA-M8/U5/16								
		20			LBBU-220-SA-M8/U5/16								
		21,3			LBBU-321.3-SA-M8/U5/16								
		22	7/8		LBBU-322-SA-M8/U5/16								
		23			LBBU-323-SA-M8/U5/16								
		25			LBBU-325-SA-M8/U5/16	12	14	57,5	23,5	15	20	40	30
dard met-	3	25,4	1		LBBU-325.4-SA-M8/U5/16	.47	.55	2.26	.93	.59	.79	1.57	1.1
mm		28			LBBU-328-SA-M8/U5/16								
ly material		30			LBBU-330-SA-M8/U5/16								
eristics		32	1-1/4		LBBU-332-SA-M8/U5/16								

ØD2

ØD3

3 12 L1 ØD1

HЗ Ξ

B

Additional outside diameters are available upon request. Please contact STAUFF for further information.



Order Code

LBBU-SP-322-SA-DP-AS-M8-W10

W10 (Weld Plate made of Carbon Steel, phosphated;

For UNC threads / bolts, please replace M8 by U5/16.

is the standard option for this type of installation.

Other metal parts made of Carbon Steel, zinc/nickel-plated)

Type of Mounting SP (with Weld Plate LBBU-SP)

Clamp assembly consisting of:

- I Hexagon Head Bolt AS
- 1 Cover Plate LBBU-DP I Sleeve LBBU-HUE
- I Clamp Body LBBU
- I Weld Plate LBBU-SP

# (with Hexagon Rail Nut SM-2-5D)

Clamp assembly consisting of:

- I Hexagon Head Bolt AS

I Hexagon Rail Nut SM-2-5D

### Order Code (Mounting Rail TS not included.) LBBU-SM-322-SA-DP-AS-M8-W3

W3 (Metal parts made of Carbon Steel, zinc/nickel-plated) is the standard option for this type of installation. For UNC threads / bolts, please replace M8 by U5/16.



Clamp assembly consisting of: I Hexagon Head Bolt AS

Type of Mounting PM

(for panel mounting without Weld Plate or Hexagon Rail Nut)

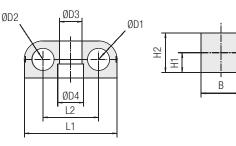
- I Cover Plate LBBU-DP 1 Sleeve LBBU-HUE
- I Clamp Body LBBU

### Order Code LBBU-PM-322-SA-DP-AS-M8-W3

W3 (Metal parts made of Carbon Steel, zinc/nickel-plated) is the standard option for this type of installation. For UNC threads / bolts, please replace M8 by U5/16.

Alternative sizes (e.g. for bolts M6 and 1/4–20 UNC), materials and surface finishings are available upon request.




Type of Mounting SM

- 1 Cover Plate LBBU-DP
- I Sleeve LBBU-HUE
- I Clamp Body LBBU

(for use with Mounting Rail TS, see page 24 for details)



# Clamp Body = Twin Design Type LBBU







Size 2 in slotted design

Size 1 and 3 with film hinge

Group		ibe / Hose	Nominal Bore Pipe	Ordering Codes (1 Clamp Body)	Dime ( ^{mm} / _{in} )	nsions					
STAUFF	(mm)	(in)	(in)		Ø D3	Ø D4	L1	L2	H1	H2	В
	4			LBBU-104/04-SA-M8/U5/16							
	6			LBBU-106/06-SA-M8/U5/16	]						
	6,4	1/4		LBBU-106.4/06.4-SA-M8/U5/16							
	8	5/16		LBBU-108/08-SA-M8/U5/16	12	14	50	30	10	20	20
1D	9,5	3/8		LBBU-109.5/09.5-SA-M8/U5/16	.47	.55	1.97	1.18	.39	.79	.79
	10		1/8	LBBU-110/10-SA-M8/U5/16		.00	1.57	1.10	.00	.15	.15
	11			LBBU-111/11-SA-M8/U5/16							
	12			LBBU-112/12-SA-M8/U5/16							
	12,7	1/2		LBBU-112.7/12.7-SA-M8/U5/16							
	10		1/8	LBBU-210/10-SA-M8/U5/16							
	11			LBBU-211/11-SA-M8/U5/16							
	12			LBBU-212/12-SA-M8/U5/16							
	12,7	1/2		LBBU-212.7/12.7-SA-M8/U5/16							
	13,5		1/4	LBBU-213.5/13.5-SA-M8/U5/16							
2D	14			LBBU-214/14-SA-M8/U5/16	12	14	59	35	12	24	20
20	15			LBBU-215/15-SA-M8/U5/16	.47	.55	2.32	1.38	.47	.94	.79
	16	5/8		LBBU-216/16-SA-M8/U5/16							
	17,2		3/8	LBBU-217.2/17.2-SA-M8/U5/16							
	18			LBBU-218/18-SA-M8/U5/16							
	19	3/4		LBBU-219/19-SA-M8/U5/16							
	20			LBBU-220/20-SA-M8/U5/16							
	21,3			LBBU-321.321.3-SA-M8/U5/16							
	22	7/8		LBBU-322/22-SA-M8/U5/16							
	23			LBBU-323/23-SA-M8/U5/16							
3D	25			LBBU-325/25-SA-M8/U5/16	12	14	86	47	20	40	30
50	25,4	1		LBBU-325.4/25.4-SA-M8/U5/16	.47	.55	3.39	1.85	.79	1.57	.79
	28			LBBU-328/28-SA-M8/U5/16							
	30			LBBU-330/30-SA-M8/U5/16							
	32	1-1/4		LBBU-332/32-SA-M8/U5/16	1						

Clamp Body *LBBU-*1*06/06-*SA-*M8/U5/16

* Light Series LBBU	LBBU
* 1st Part of STAUFF Group	1
* Exact outside diameters Ø D1 / Ø D2 (mm)	06/06
* Material code (see below)	SA
* Thread code (suitable for bolts M8 and U5/16)	M8/U5/16

# **Standard Materials**

**Ordering Codes** 

Thermoplastic Elastomer (87 Shore-A) Colour: Black Material code: SA

See pages 154 / 155 for material properties and technical nformation.

Alternative materials are available upon request. Please contact STAUFF for further information.

# **Product Features**

- Compact and light-weight design for applications in which space is limited
- Available in 3 different sizes and covering all standard metric and imperial diameters between 4 mm and 32 mm
- Vibration-damping and noise-reducing clamp body material with UV, ozone and weathering-resistant characteristics
- · Embedded metal sleeve to ensure stability of the clamp assembly

Additional outside diameters and combinations of different outside diameters are available upon request. Please contact STAUFF for further information.



**Order Code** 

Type of Mounting SP (with Weld Plate LBBU-SP)

Clamp assembly consisting of:

- 1 Hexagon Head Bolt AS
- 1 Cover Plate LBBU-DP1 Sleeve LBBU-HUE
- 1 Sleeve LBBU-HUE
   1 Clamp Body LBBU
- 1 Weld Plate LBBU-SP



### Type of Mounting SM (with Hexagon Rail Nut SM-2-5D)

Clamp assembly consisting of:

- 1 Hexagon Head Bolt AS1 Cover Plate LBBU-DP
- 1 Sleeve LBBU-HUE
- 1 Clamp Body LBBU

 1 Hexagon Rail Nut SM-2-5D (for use with Mounting Rail TS, see page 24 for details)

# Order Code (Mounting Rail TS not included.) LBBU-SM-322/22-SA-DP-AS-M8-W3

W3 (Metal parts made of Carbon Steel, zinc/nickel-plated) is the standard option for this type of installation. For UNC threads / bolts, please replace M8 by U5/16.



# Type of Mounting PM

(for panel mounting without Weld Plate or Hexagon Rail Nut) Clamp assembly consisting of:

- 1 Hexagon Head Bolt AS1 Cover Plate LBBU-DP
- 1 Cover Plate LBBU 1 Sleeve LBBU-HUE
- I Clamp Body LBBU

### Order Code LBBU-PM-322/22-SA-DP-AS-M8-W3

W3 (Metal parts made of Carbon Steel, zinc/nickel-plated) is the standard option for this type of installation. For UNC threads / bolts, please replace M8 by U5/16.

Alternative sizes (e.g. for bolts M6 and 1/4–20 UNC), materials and surface finishings are available upon request.



LBBU-SP-322/22-SA-DP-AS-M8-W10

W10 (Weld Plate made of Carbon Steel, phosphated;

For UNC threads / bolts, please replace M8 by U5/16.

is the standard option for this type of installation.

Other metal parts made of Carbon Steel, zinc/nickel-plated)

# **Estauff**®

# Weld Plate Type LBBU-SP

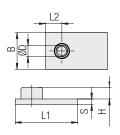
**Ordering Codes** 

**Weld Plate** 

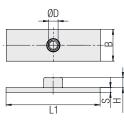
* Thread code

* Material code

* Light Series LBBU
* Weld Plate
* STAUFF Group




Metric ISO thread: M8


UNC thread: 5/16-18 UNC

Carbon Steel, phosphated

*LBBU-SP-*1D-*M8-*



# STAUFF Group 1 to 3



STAUFF Group 1D to 3D

	Group	Dimensi	ons ( ^{mm} /in)						Ordering Codes
	STAUFF	ØD	L1	L2	Н	В	S	Thread G	(Standard Options)
	1	14	34	9	10,3	20	5	M8	LBBU-SP-1-M8-W2
*W2	1	.55	1.34	.35	.41	.79	.20	5/16-18 UNC	LBBU-SP-1-U5/16-W2
	2	14	39	9	10,3	20	5	M8	LBBU-SP-2-M8-W2
LBBU	2	.55	1.54	.35	.41	.79	.20	5/16-18 UNC	LBBU-SP-2-U5/16-W2
	3	14	57,5	15	10,3	30	5	M8	LBBU-SP-3-M8-W2
-SP	3	.55	2.26	.59	.41	1.18	.20	5/16-18 UNC	LBBU-SP-3-U5/16-W2
1D	1D	14	50	$\wedge$	10,3	20	5	M8	LBBU-SP-1D-M8-W2
	IU	.55	1.97		.41	.79	.20	5/16-18 UNC	LBBU-SP-1D-U5/16-W2
M8	2D	14	59	1 V -	10,3	20	5	M8	LBBU-SP-2D-M8-W2
U5/16	20	.55	2.32	$1 \land$	.41	.79	.20	5/16-18 UNC	LBBU-SP-2D-U5/16-W2
W2	3D	14	86		10,3	30	5	M8	LBBU-SP-3D-M8-W2
	30	.55	3.39	$/ \wedge$	.41	1.18	.20	5/16-18 UNC	LBBU-SP-3D-U5/16-W2

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative sizes (e.g. for bolts M6 and 1/4-20 UNC), materials and surface finishings are available upon request.

ØD1

ØD2

# Sleeve Type LBBU-HUE



Dimensions applicable only when used with Weld Plate LBBU-SP (**Type of Mounting SP**)

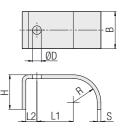
Group	Dime	isions	( ^{mm} /in)	Ordering Codes
STAUFF	ØD1	ØD2	L	(Standard Options)
1	12	9	13,5	LBBU-HUE-1/1D-SP-
'	.47	.35	.53	M8/U5/16-W3
2	12	9	17,5	LBBU-HUE-2/2D-SP-
2	.47	.35	.69	M8/U5/16-W3
3	12	9	33,5	LBBU-HUE-3/3D-SP-
3	.47	.35	1.32	M8/U5/16-W3
1D	12	9	13,5	LBBU-HUE-1/1D-SP-
ID	.47	.35	.53	M8/U5/16-W3
20	12	9	17,5	LBBU-HUE-2/2D-SP-
20	.47	.35	.69	M8/U5/16-W3
3D	12	9	33,5	LBBU-HUE-3/3D-SP-
30	.47	.35	1.32	M8/U5/16-W3



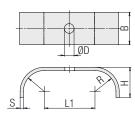
Dimensions applicable only when used with Hexagon Rail Nut SM-2-5D (**Type of Mounting SM**)

Group	Dimer	nsions	( ^{mm} /in)	Ordering Codes
STAUFF	ØD1	ØD2	L	(Standard Options)
1	12	9	12,8	LBBU-HUE-1/1D-SM-
'	.47	.35	.50	M8/U5/16-W3
2	12	9	16,8	LBBU-HUE-2/2D-SM
2	.47	.35	.66	M8/U5/16-W3
3	12	9	32,8	LBBU-HUE-3/3D-SM-
3	.47	.35	1.29	M8/U5/16-W3
1D	12	9	12,8	LBBU-HUE-1/1D-SM-
ID.	.47	.35	.50	M8/U5/16-W3
2D	12	9	16,8	LBBU-HUE-2/2D-SM-
20	.47	.35	.66	M8/U5/16-W3
3D	12	9	32,8	LBBU-HUE-3/3D-SM-
30	.47	.35	1.29	M8/U5/16-W3

Dimensions applicable only when used for panel mounting without Weld Plate or Hexagon Rail Nut (**Type of Mounting PM**)


Group	Dimer	nsions	( ^{mm} /in)	Ordering Codes
STAUFF	ØD1	ØD2	L	(Standard Options)
1	12	9	18,8	LBBU-HUE-1/1D-PM-
1	.47	.35	.74	M8/U5/16-W3
2	12	9	22,7	LBBU-HUE-2/2D-PM-
2	.47	.35	.89	M8/U5/16-W3
3	12	9	38,8	LBBU-HUE-3/3D-PM-
3	.47	.35	1.53	M8/U5/16-W3
10	12	9	18,8	LBBU-HUE-1/1D-PM-
1D	.47	.35	.74	M8/U5/16-W3
2D	12	9	22,7	LBBU-HUE-2/2D-PM-
20	.47	.35	.89	M8/U5/16-W3
20	12	9	38,8	LBBU-HUE-3/3D-PM-
3D	47	35	1 53	M8/U5/16-W3

Alternative sizes (e.g. for bolts M6 and 1/4–20 UNC), materials and surface finishings are available upon request.




# **Light Series**

# **Cover Plate Type LBBU-DP**



STAUFF Group 1 to 3



STAUFF Group 1D to 3D

Group	Dimens	ions ( ^{mm} /in)						Ordering Codes
STAUFF	ØD	L1	L2	R	Н	В	S	(Standard Options)
4	9	15	9	10	16	20	3	LBBU-DP-1-M8/U5/16-W3
1	.35	.59	.35	.39	.63	.79	.12	LBBU-DF-1-W0/05/10-W5
2	9	18	9	12	20	20	3	LBBU-DP-2-M8/U5/16-W3
2	.35	.71	.35	.47	.79	.79	.12	LBB0-DF-2-100/05/10-W3
3	9	23,5	15	19,5	28	30	3	LBBU-DP-3-M8/U5/16-W3
3	.35	.93	.59	.77	1.10	1.18	.12	LBB0-DF-3-108/03/10-W3
1D	9	30		10	16	20	3	LBBU-DP-1D-M8/U5/16-W3
ID	.35	1.18		.39	.63	.79	.12	LBB0-DF-1D-100/03/10-03
2D	9	35	$\square$	12	20	20	3	LBBU-DP-2D-M8/U5/16-W3
20	.35	1.38	$\neg \land$	.47	.79	.79	.12	LDBU-DP-2D-W8/05/16-W3
3D	9	47		19,5	28	20	3	LBBU-DP-3D-M8/U5/16-W3
30	.35	1.85		.77	.63	.79	.12	LDDU-DP-3D-M8/05/16-W3

	edit >	

Ordering C	odes	
Cover Plate	*LBBU-DP-*1D-*M8/U	5/16-*W3
* Light Series LB	BU	LBBU
* Cover Plate		-DP
* STAUFF Group		1D
* Thread code (su	itable for bolts M8 and U5/16)	M8/U5/16
* Material code	Carbon Steel, zinc/nickel-pla	ted W3

Alternative sizes (e.g. for bolts M6 and 1/4-20 UNC), materials and surface finishings are available upon request.

# **Hexagon Head Bolt Type AS**



# Hexagon Head Bolt AS

(according to DIN 931 / 933 or ANSI / ASME B18.2.1.) Dimensions applicable only when used with Weld Plate LBBU-SP (Type of Mounting SP) or Hexagon Rail Nut SM-2-5D (Type of Mounting SM)

Group	Dimensions (mm/in)	Ordering Codes
STAUFF	Thread G x L	(Standard Options)
1	M8 x 25	AS-M8x25-W3
1	5/16-18 UNC x 1	AS-U5/16-18x1-W3
2	M8 x 28	AS-M8x28-W3
2	5/16-18 UNC x 1-1/8	AS-U5/16-18x1-1/8-W3
3	M8 x 45	AS-M8x45-W3
3	5/16-18 UNC x 1-3/4	AS-U5/16-18x1-3/4-W3
1D	M8 x 25	AS-M8x25-W3
IU	5/16-18 UNC x 1	AS-U5/16-18x1-W3
2D	M8 x 28	AS-M8x28-W3
20	5/16-18 UNC x 1-1/8	AS-U5/16-18x1-1/8-W3
3D	M8 x 45	AS-M8x45-W3
30	5/16-18 UNC x 1-3/4	AS-U5/16-18x1-3/4-W3



# **Hexagon Head Bolt AS**

(according to DIN 931 / 933 or ANSI / ASME B18.2.1.) Dimensions applicable only when used for panel mounting without Weld Plate or Hexagon Rail Nut (Type of Mounting PM)

Group	Dimensions (mm/in)	Ordering Codes
STAUFF	Thread G x L	(Standard Options)
1	M8 x 30	AS-M8x30-W3
1	5/16-18 UNC x 1-1/4	AS-U5/16-18x1-1/4-W3
2	M8 x 35	AS-M8x35-W3
2	5/16-18 UNC x 1-3/8	AS-U5/16-18x1-3/8-W3
<b>`</b>	M8 x 50	AS-M8x50-W3
3	5/16-18 UNC x 2	AS-U5/16-18x2-W3
1D	M8 x 30	AS-M8x30-W3
ID	5/16-18 UNC x 1-1/4	AS-U5/16-18x1-1/4-W3
2D	M8 x 35	AS-M8x35-W3
20	5/16-18 UNC x 1-3/8	AS-U5/16-18x1-3/8-W3
3D	M8 x 50	AS-M8x50-W3
30	5/16-18 UNC x 2	AS-U5/16-18x2-W3

Ordering Codes					
Hexagon Head	d Bolt *AS-*M8x25-*\	N3			
<b>*</b> Type of bolt	Hexagon Head Bolt (according to DIN 931 / 933 or ANSI / ASME B18.2.1.)	AS			
* Thread code	Thread dimension according to dimension table	x25			
* Material code	Carbon Steel, zinc/nickel-plated	W3			

All threaded parts are available with Metric ISO thread or unified coarse (UNC) thread according to dimension table. Alternative sizes (e.g. for bolts M6 and 1/4–20 UNC), materials and surface finishings are available upon request.

# 

# Clamp Body = Single Design Type LB



Ordering C	odes	
Clamp Body	*LB-*1*03.2	-*PP
<ul> <li>Light Series:</li> <li>STAUFF Group</li> <li>Exact outside di</li> <li>Material code (s</li> </ul>	Clamp Body / Single Design ameter Ø D1 (mm) ee below)	LB 1 03.2 PP
Standard Mate		

Colour: Black

Polyamide

information.

**Applications** 

Colour: Yellow

Material code: PA

See pages 154 / 155 for material properties and technical

Alternative materials are available upon request.

Please contact STAUFF for further information.

Material code: PP

Pipe / Tube / Hose Bore (1 Clamp Body) (^{mm}/_{in}) Ø D1 Pipe STAUFF (mm) (** = Material) В Н Ø D2 Ø D3 (in) (in) L1 L2 L3 S LB-103.2-** 3,2 1/8 LB-106-** 22 12 10,5 2 6 9 6,5 6,8 7 1 LB-106.4-** .87 .35 .47 .08 .27 .28 6.4 1/4 .26 .41 8 LB-108-****** 9,5 3/8 LB-209.5-** 1/8 LB-210-** 10 2 27 11 7 16 15 6,8 7 2 1.06 .08 .27 .28 11,1 LB-211.1-** .43 .28 .63 .59 12 LB-212-** 12,7 1/2 I B-312.7-** 1/4 13,5 LB-313.5-** 14 LB-314-** 34 15 20 22,5 2 6,8 7 7 3 15 LB-315-** .27 1.34 .59 .28 .79 .89 .08 .28 5/8 16 LB-316-** 17,2 3/8 LB-317.2-** LB-318-** 18 3/4 19 LB-419-** 20 LB-420-** 21,3 1/2 LB-421.3-** 42 19 7 20 30 2 6,8 7 4 .28 22 LB-422-** 1.65 .75 .28 .79 1.18 .08 .27 25 LB-425-** LB-425.4-** 25,4 1

øD2

L2

L1

L3

Dimensions

øD

L1

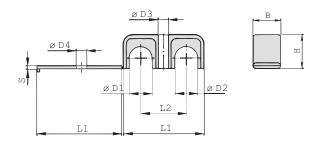
Nominal Ordering Codes

ø D 3

S

**Outside Diameter** 

Group


Additional outside diameters are available upon request. Please contact STAUFF for further information.

 Pneumatics, Instrumentation and Automotive Technology, Machine Tool Industry, Lubrication, Mechanical Engineering

www.stauff.com/1/en/#116

**Light Series** 

# Clamp Body • Twin Design Types LBG / LBU



Group		Diameters be / Hose D2	/ Hose Bore (1 Clamp Body)			Dimensions ( ^{mm} / _{in} )						
STAUFF	(mm)	(in)	(in)	(** = Material)	L1	L2	В	Н	S	Ø D3	Ø D4	
	3,2	1/8		LBG-103.2/03.2-**								
1	6			LBG-106/06-**	31	18	12	10,5	2	6,8	7	
'	6,4	1/4		LBG-106.4/06.4-**	1.22	.71	.47	.41	.08	.27	.28	
	8			LBG-108/08-**								
	9,5	3/8		LBG-209.5/09.5-**								
2	10		1/8	LBG-210/10-**	39	22	16	15	2	6,8	7	
	11,1			LBG-211.1/11.1- <b>**</b>	1.54	.87	.63	.59	.08	.27	.28	
	12			LBG-212/12-**								
	12,7	1/2		LBG-312.7/12.7-**								
	13,5		1/4	LBG-313.5/13.5-**								
	14			LBG-314/14- <b>**</b>	53	30	20	22,5	2	6,8	7	
3	15			LBG-315/15-**	2.09	1.18	.79	.89	.08	.27	.28	
	16	5/8		LBG-316/16-**	2.03	1.10	.13	.09	.00	.21	.20	
	17,2		3/8	LBG-317.2/17.2-**								
	18			LBG-318/18-**								
	19	3/4		LBG-419/19-**								
	20			LBG-420/20-**								
4	21,3		1/2	LBG-421.3/21.3-**	70	38	20	30	2	6,8	7	
-	22			LBG-422/22-**	2.76	1.50	.79	1.18	.08	.27	.28	
4 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	25			LBG-425/25-**								
	25,4	1		LBG-425.4/25.4-**								

Additional outside diameters and combinations of different outside diameters (Clamp Body, Type LBU) are available upon request. Please contact STAUFF for further information.

Ordering C	odes	
Clamp Body	*LBG-*1*03.2/03	3.2-*PP
* Light Series:	Clamp Body / Twin Design with identical diameters Clamp Body / Twin Design with different diameters	LBG LBU
<ul> <li>STAUFF Group</li> <li>Exact outside di</li> <li>Material code (s</li> </ul>	ameters Ø D1 / Ø D2 (mm) see below)	1 03.2/03.2 PP
material code (3		

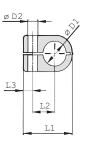
# **Standard Materials**



Polyamide Colour: Yellow Material code: PA

See pages 154 / 155 for material properties and technical information.

Alternative materials are available upon request. Please contact STAUFF for further information.


# **Applications**

 Pneumatics, Instrumentation and Automotive Technology, Machine Tool Industry, Lubrication, Mechanical Engineering

# R STAUFF

# Clamp Body - Single Design Type LN



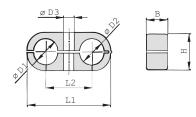




Clamp Body         *LN-*1*06-*PP         STAUFF (mm) (in) (in) (in) (** = Material)         L1         L2         L3         B         H           6         LN-106-**         LN-106-** <th>Ø D2</th>	Ø D2
$\frac{1}{10000000000000000000000000000000000$	
* Light Series: Clamp Body / Single Design LN 1 6,4 1/4 LN-106.4-** 22 9 7 14,5 13,5 13,6 13,6 13,6 13,6 13,6 13,6 13,6 13,6	6,8
* STAUFF Group 1 8 LN-108-** .07 .03 .20 .07 .03	.21
* Exact outside diameter Ø D1 (mm) 06 8 LN-208-**	
	6,8
<b>2 10 1/8 LN-210-** 27 11 7 14,5 18,6 10 1/8 LN-210-** 10 1/8 LN-210-**</b>	.27
12 LN-212- <b>**</b>	.21
Standard Materials 12,7 1/2 LN-212.7-**	
10 1/8 LN-310- <b>**</b>	
Polypropylene 12 LN-312-**	
Colour Croop 12 7 1/2 IN-312 7-**	<b>C</b> 0
Colour: Green         33         15         7         14,5         23,6           Material code: PP         33         15         7         14,5         23,6	6,8
14 LN-314- <b>**</b> 1.50 .59 .20 .57 .53	.27
Polyamide 15 LN-315- <b>*</b> *	
Colour: Black 16 5/8 LN-316-**	
Material code: PA 14 LN-414-**	
15 LN-415- <b>*</b> *	
See pages 154 / 155 for material properties and technical 16 5/8 LN-416-**	
information 17.2 3/8 IN-417 2-**	0.0
<b>4 18 18 18 18 18 18 18 18</b>	
Alternative materials are available upon request. 19 3/4 LN-419-** 1.57 .75 .28 .57 1.20	.21
Please contact STAUEF for further information. 20 LN-420-**	
21,3 1/2 LN-421.3-**	

22

# **Applications**


Pneumatics, Instrumentation and Automotive Technology, Machine Tool Industry, Lubrication, Mechanical Engineering Additional outside diameters are available upon request. Please contact STAUFF for further information.

LN-422-**

# STAUFF

**Light Series** 

# Clamp Body • Twin Design Type LNGF / LNUF





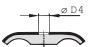
Group	Pipe / Tu	Diameters be / Hose	Bore	Ordering Codes (1 Clamp Body)	Dimensions ( ^{mm} / _{in} )					
STAUFF	Ø D1 / Ø (mm)	D2 (in)	Pipe (in)	( <b>**</b> = Material)	L1	L2	R	ц	Ø D2	
STAULT	6	(11)	(11)	LNGF-106/06-**	LI	LZ	D	11	000	
1	6,4	1/4		LNGF-106.4/06.4-**	32	18	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
1	8	1/4		LNGF-108/08-**	1.26	.70	.57	.53	.27	
	8			LNGF-208/08-**						
	9,5	3/8		LNGF-209.5/09.5-**						
2	9,5 10	5/0	1/8	LNGF-210/10-**	41	22				
2	12		170	LNGF-212/12-**	1.61	.86	.57	.73	.27	
	12,7	1/2		LNGF-212.7/12.7-**						
	10	172	1/8	LNGF-310/10-**						
	12			LNGF-312/12-**						
	12.7	1/2		LNGF-312.7/12.7-**						
3	13,5		1/4	LNGF-313.5/13.5-**	54	30	· · ·	- / -	- / -	
	14			LNGF-314/14-**	2.13	1.18	.57	.93	.27	
	15			LNGF-315/15-**						
	16	5/8		LNGF-316/16-**						
	14			LNGF-414/14-**						
	15			LNGF-415/15-**						
	16	5/8		LNGF-416/16-**						
	17,2		3/8	LNGF-417.2/17.2-**	70	00	145	00 F	<u> </u>	
4	18			LNGF-418/18-**	70 2.76	38 1.50	14,5 .57	30,5	6,8	
4	19	3/4		LNGF-419/19-**	2.70	1.00	.57	1.20	.21	
	20			LNGF-420/20-**						
	21,3		1/2	LNGF-421.3/21.3-**						
	22			LNGF-422/22-**						

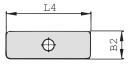
Additional outside diameters and combinations of different outside diameters (Clamp Body, type LNUF) are available upon request. Please contact STAUFF for further information.

Ordering Codes	
Clamp Body *LNGF-*1*	*06/06-*PP
* Light Series: Clamp Body / Twin Dew with identical diameter Clamp Body / Twin Dew with different diameter	rs LNGF
* STAUFF Group * Exact outside diameters Ø D1 / Ø D2 (m * Material code (see below)	1

# **Standard Materials**





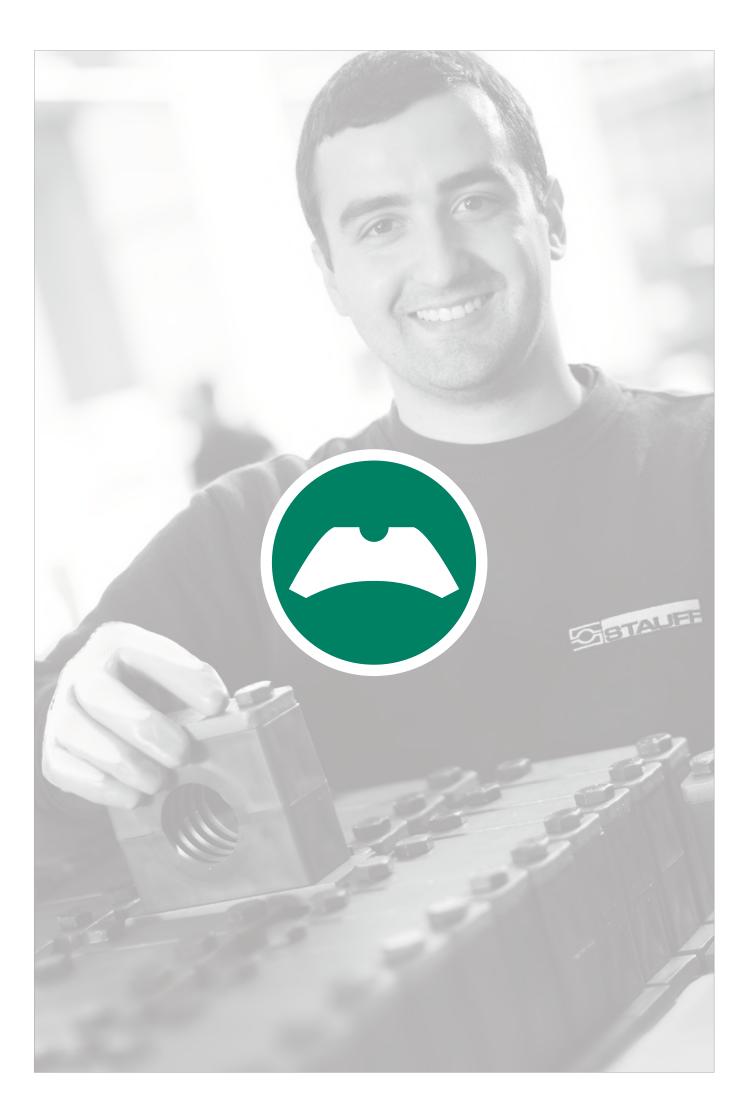


See pages 154/155 for material properties and technical information. Alternative materials are available upon request. Please contact STAUFF for further information.

# **Applications**

 Pneumatics, Instrumentation and Automotive Technology, Machine Tool Industry, Lubrication, Mechanical Engineering

# Cover Plate Type DPL








1	Group	Dimensions (mm/in)			Ordering Codes	
1	STAUFF	L4	B2	Ø D4	(Standard Options)	Orderin
	1	29,5	15,5	6,8	DPL-1-W3	
		1.16	.61	.27	DFL-1-W3	Cover Pla
	<b>^</b>	40	15,5	6,8	DPL-2-W3	
1	2	1.57	.61	.27	DPL-2-W3	* Cover Pla
	•	51	16	6,8		
1	3	2.01	.63	.27	DPL-3-W3	* STAUFF G
		63,5	16	6,8		* Material of
1	4	2.50	.63	.27	DPL-4-W3	matorial

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information. Please note: The maximum tightening torque for bolts is 2,5 N·m (1.85 ft·lb).









Saddle / Piggyback Clamp

ZR-518

Custom-Designed Saddle / Piggyback Clamps

122

122

# R ISTAU

# Saddle / Piggyback Clamps Type ZR





Order Code	Min/Max Outside Diameters * Pipe / Tube				Tightening Strap Dimensions (Not Included in Scope of Delivery)				
Saddle Clamp	ZR-518-SA73-BK	Ø D1 (mm)	(in)	Ø D2 (mm)	(in)	Length (mm)	(in)	Width (mm)	(in)
				50 70	1.96 2.76	196 254	7.71 10.00		
Standard Material				60 80	2.36 3.15	225 284	8.86 11.18		
Thermoplastic Elast Colour: Black	omer (73 Shore-A)			70 90	2.76 3.54	254 314	10.00 12.36		
See names 154 / 155 for prope	ties and technical information.			80 105	3.15 4.13	284 359	11.18 14.13		
		10 22	.3987	90 120	3.54 4.72	314 404	12.36 15.90	13	.51
				105 140	4.13 5.51	359 464	14.13 18.27		
				125 160	4.92 6.30	419 525	16.50 20.66		
				145 180	5.71 7.09	479 586	18.86 23.07		
				165 200	6.50 7.87	540 647	21.26 25.47		

* Ø D1 depending on Ø D2!

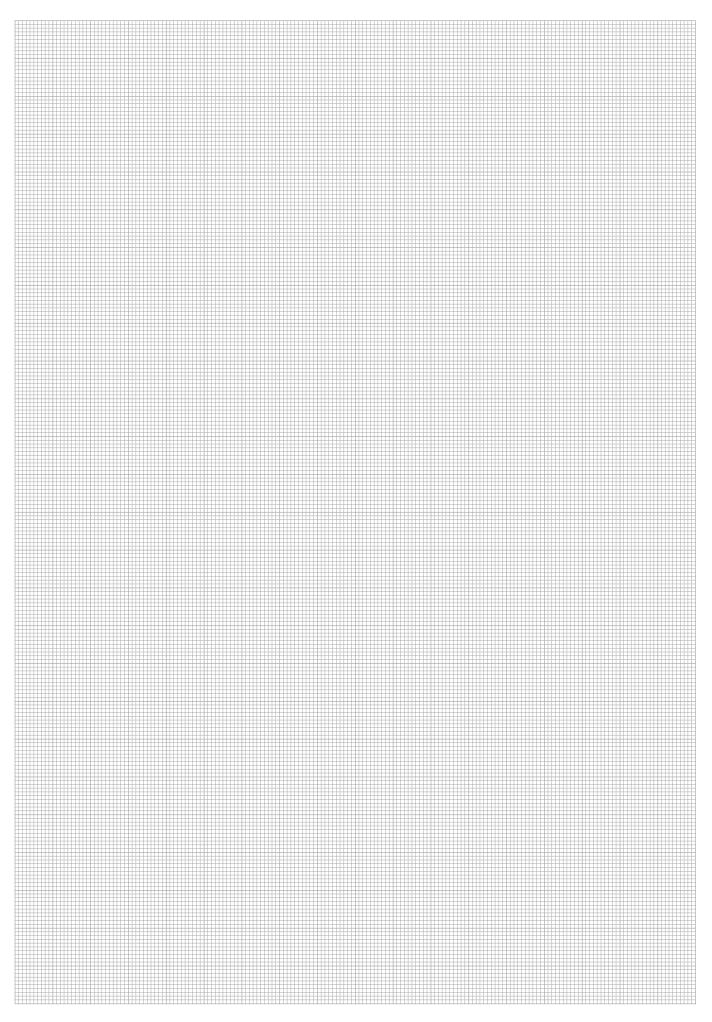
# Saddle / Piggyback Clamps

Type ZR saddle clamps from STAUFF allow direct fixing and safe guiding of pipes, tubes and hoses on hydraulic cylinders and other round or oval structures, without causing damage to their strength or integrity as with screw-fixing or welding and without preparation or reworking of the surface coating. The simple system also allows a pipe, tube or hose with a small outer diameter to be installed on top of a significantly larger one.

The position can be adjusted at any time thanks to free axial and radial positioning of the clamps on the structure. This also makes the system suitable for retrofitting.

The standard version ZR-518 made of thermoplastic elastomer material covers diameters in a range from 50 to 200 mm / 1.96 to 7.87 in for the cylinder and from 10 to 22 mm / .39 to .87 inch for the attached tube or hose. The diameters to be covered are used to calculate the overall length of the required tightening straps or the dimensions of the steel strap or worm drive hose clamp, e.g. according to DIN 3017.

STAUFF meets deviating requirements with numerous other variants which were implemented in the past and can be manufactured again at any time.


If required, customised clamps can be developed for specific requirements or manufactured based on drawings and models provided.

Please contact STAUFF for further information.



Dimensional drawings: All dimensions in mm (in).









0	Flat Steel U-Bolt with Plastic Pipe Saddle (Short) and U-Profile FB / RUK	126
$\bigcap$	Round Steel U-Bolt with Plastic Pipe Saddle (Short) RB / RUK	128
Ω	Round Steel U-Bolt with Plastic Pipe Saddle (Long) RB / RUL	130
$\bigcap$	Round Steel U-Bolt (DIN 3570, Type A) without Plastic Pipe Saddle RBD	132

# ര

# Flat Steel U-Bolt with Plastic Pipe Saddle (Short) and U-Profile

*FB+RUK-*48.3-*PP-*W

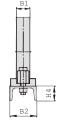
Type FB+RUK (To be used as Fixed Point Clamps only)



One clamp assembly is consisting of one Flat Steel U-Bolt (type FB), one Plastic Pipe Saddle (type RUK), one U-Profile (to DIN 1026) with two Nuts (to DIN EN ISO 4032) and two Hexagon Head Bolts (to DIN EN ISO 4014 / 4017).

Carbon Steel, zinc-plated,

Carbon Steel, uncoated.


1.4401 / 1.4571 (AISI 316 / 316 Ti) The U-Profile (to DIN 1026) is made of

All items are supplied assembled.

blue-chromated Stainless Steel V4A

**Standard Materials for Plastic Pipe Saddles** 

H1 H2		
	L2 L1	



Flat Steel U-Bolt (type FB) with Plastic Pipe Saddle (type RUK), U-Profile and Hexagon Head Bolts

	Diameter Nominal	Outside I Pipe / Tu		Nominal Bore		U-Profile					
P-*W1	DN	Ø D1 (mm)	(in)	Pipe (in)	Flat Ste L1	el U-Bolt ( L2	Type FB) H1	H2	H3	B1	(DIN 1026 B2 x H4
	40	40.0	1.00	1.1/0	100	76	95	67	5	20 x 3	50 x 38
J-Bolt	40	48,3	1.93	1-1/2	3.94	2.99	3.74	2.64	.20	.78 x .12	1.97 x 1.5
Profile			0.00		115	85	103	71,5	5	20 x 3	50 x 38
1 I I I I I I I I I I I I I I I I I I I	50	57	2.28		4.53	3.35	4.06	2.81	.20	.78 x .12	1.97 x 1.5
	50		0.44	0	115	88	106	73,2	5	20 x 3	50 x 38
		60,3	2.41	2	4.53	3.46	4.17	2.88	.20	.78 x .12	1.97 x 1.5
8+RUK	05	70.4	0.04	0.1/0	132	104	122	81	5	20 x 3	50 x 38
	65	76,1	3.04	2-1/2	5.20	4.09	4.80	3.19	.20	.78 x .12	1.97 x 1.5
48.3	00	00.0	2.50	3	160	121	146	97,5	8	40 x 4	80 x 45
PP	80	88,9	3.56	3	6.30	4.76	5.75	3.84	.31	1.57 x .16	3.15 x 1.7
		108	4.00		170	140	165	107	8	40 x 4	80 x 45
W1	100	108	4.32		6.69	5.51	6.50	4.21	.31	1.57 x .16	3.15 x 1.7
W33	100	114.0	4.57	4	180	147	171	110	8	40 x 4	80 x 45
		114,3	4.57	4	7.09	5.79	6.73	4.33	.31	1.57 x .16	3.15 x 1.7
		100	F 00		210	165	190	119,5	8	40 x 4	80 x 45
W5	105	133	5.32		8.27	6.50	7.48	4.70	.31	1.57 x .16	3.15 x 1.7
	125	400 -	5.50	-	210	172	197	123	8	40 x 4	80 x 45
le of		139,7	5.59	5	8.27	6.77	7.76	4.84	.31	1.57 x .16	3.15 x 1.7
					265	201	220	132,5	8	40 x 6	80 x 45
	150	159	6.36		1.43	7.91	8.66	5.22	.31	1.57 x .24	3.15 x 1.7
					275	211	230	137	8	40 x 6	80 x 45
		168,3	6.73	6	1.83	8.31	9.06	5.39	.31	1.57 x .24	3.15 x 1.7
dles ₁₇₅					305	236	255	150	8	40 x 6	80 x 45
	175	193,7	7.75		12.01	9.29	1.04	5.91	.31	1.57 x .24	3.15 x 1.7
					320	258	277	161	8	40 x 6	80 x 45
		216	8.64		12.60	10.16	1.91	6.34	.31	1.57 x .24	3.15 x 1.7
	200				320	261	280	162,5	8	40 x 6	80 x 45
		219,1	8.76	8	12.60	1.28	11.02	6.40	.31	1.57 x .24	3.15 x 1.7
					380	324	328	186,5	8	40 x 8	80 x 45
		267	10.68		14.96	12.76	12.91	7.34	.31	1.57 x .31	3.15 x 1.7
	250				385	330	334	189,5	8	40 x 8	80 x 45
		273	10.92	10	15.16	12.99	13.15	7.46	.31	1.57 x .31	3.15 x 1.7
					440	375	382	212	8	40 x 8	80 x 45
		318	12.72		17.32	14.76	15.04	8.35	.31	1.57 x .31	3.15 x 1.7
	300				450	381	390	215	8	40 x 8	80 x 45
		323,9	12.96	12	17.72	15.00	15.35	8.46	.31	1.57 x .31	3.15 x 1.7
					480	417,5	421	235	12	60 x 8	100 x 50
		355,6	14.22	14	18.90	16.44	16.57	9.25	.47	2.36 x .31	3.94 x 1.9
	350				490	430	434	242	12	60 x 8	100 x 50
		368	14.72		19.29	16.93	17.09	9.53	.47	2.36 x .31	3.94 x 1.9
			10.4-		550	468,5	472	261	12	60 x 8	100 x 50
		406,4	16.26	16	21.65	18.44	18.58	10.28	.47	2.36 x .31	3.94 x 1.9
					550	481	485	267,5	12	60 x 8	100 x 50
	400	419	16.76		21.65	18.94	19.09	10.53	.47	2.36 x .31	3.94 x 1.9
					585	519	523	286,5	12	60 x 8	100 x 50
		457	18.28	18	23.03	20.43	20.59	11.28	.47	2.36 x .31	3.94 x 1.9
					630	570	574	312	12	60 x 8	100 x 50
		508	20.32	20	24.80	22.44	22.60	12.28	.47	2.36 x .31	3.94 x 1.9
	500				640	583	587	319	12	60 x 8	100 x 50
		521	20.84		25.20	22.96	23.11	12.56	.47	2.36 x .31	3.94 x 1.9

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

7

Colour: Green Material code: PP

Polypropylene

Please note:

Please note:

**Ordering Codes** 

* Clamp Assembly (as listed above)

* Exact outside diameter Ø D1 (mm)

* Material of Pipe Saddle (see below)

* Material code Carbon Steel, uncoated

**Clamp Assembly** 

Polyamide Colour: Black Material code: PA

See pages 154 / 155 for material properties and technical information.

Alternative materials are available upon request. Please contact STAUFF for further information.

# **Applications**

- Standing or hanging installation of pipes and tubes on beams, profiles and consoles
- Design with two threaded ends allows for ideal adaptation to suit the exact outer diameter of the pipe or tube



www.stauff.com/1/en/#126



# Flat Steel U-Bolt with Plastic Pipe Saddle (Short) and U-Profile

# (To be used as Fixed Point Clamps only) Type FB+RUK



**Plastic Pipe Saddle (type RUK)** (For size DN 40, dimension L4 is staggered by 90°)

G

Hexagon Head Bolt AS (according to DIN EN ISO 4014 / 4017)

Diameter Nominal	Outside Pipe / Tu	Diameter Jbe	Nominal Bore	Dimen	sions ( ^m	Hexagon Head Bolt					
DN	Ø D1 DN (mm)		Pipe (in)	Plastic L3	Pipe Sa L4	addle (ty B3	pe RUK) D2	H5	H6	H7	(DIN EN ISO 4014 / 4017) Thread G x L
		(in)		24	25	35	8	5	8	5	
40	48,3	1.93	1-1/2	.94	.98	1.38	.31	.20	.31	.20	M10 x 40
	57	2.28		38	25	50	10	5	10	6	M10 x 40
50	57	2.20		1.50	.98	8 1.97	.39	.20	.39	.24	M10 x 40
50	60,3	2.41	2	38	25	50	10	5	10	6	M10 x 40
	00,3	2.41	2	1.50	.98	1.97	.39	.20	.39	.24	WITU X 40
65	76,1	3.04	2-1/2	38	25	50	10	5	10	6	M10 x 40
00	70,1	0.01	2 172	1.50	.98	1.97	.39	.20	.39	.24	
80	88,9	3.56	3	75	40	70	15	8	17	10	M 12 x 55
	00,0	0.00	0	2.95	1.57	2.76	.59	.31	.67	.39	
	108	4.32		75	40	70	15	8	17	10	M 12 x 55
100				2.95	1.57	2.76	.59	.31	.67	.39	
	114,3	4.57	4	75	40	70	15	8	17	10	M 12 x 55
	,-			2.95	1.57	2.76	.59	.31	.67	.39	
	133	5.32		75	40	70	15	8	17	10	M 12 x 55
125		-		2.95	1.57	2.76	.59	.31	.67	.39	
139,7		5.59	5	75	40	70	15	8	17	10	M 12 x 55
	-			2.95	1.57	2.76	.59	.31	.67	.39	
159	6.36		140	90	75	25	8	26	10	M 16 x 75	
50				5.51	3.54	2.95	.98	.31	1.02	.39	
168,3	6.73	6	140	90	75	25	8	26	10	M 16 x 75	
				5.51	3.54	2.95	.98	.31	1.02	.39	
175	193,7	7.75		140	90	75	25 .98	8	26	10	M 16 x 75
,			5.51	3.54 90	2.95		.31	1.02	.39		
21	216	8.64		140 5.51	3.54	75 2.95	25 .98	8 .31	1.02	10 .39	M 16 x 75
200				140	90	75	25	8	26	10	
	219,1	8.76	8	5.51	3.54	2.95	.98	.31	1.02	.39	M 16 x 75
				140	90	75	25	8	26	10	
	267	10.68		5.51	3.54	2.95	.98	.31	1.02	.39	M 20 x 80
250				140	90	75	25	8	26	10	
	273	10.92	10	5.51	3.54	2.95	.98	.31	1.02	.39	M 20 x 80
				220	150	75	30	8	32	10	
	318	12.72		8.66	5.91	2.95	1.18	.31	1.26	.39	M 20 x 80
300				220	150	75	30	8	32	10	
	323,9	12.96	12	8.66	5.91	2.95	1.18	.31	1.26	.39	M 20 x 80
	055.0	44.00		220	150	75	30	8	32	10	1101 100
050	355,6	14.22	14	8.66	5.91	2.95	1.18	.31	1.26	.39	M 24 x 100
350	000	14.70		220	150	75	30	8	32	10	M.04.: 100
	368	14.72		8.66	5.91	2.95	1.18	.31	1.26	.39	M 24 x 100
	106 4	16.06	16	220	150	75	30	8	32	10	M 24 x 100
	406,4	16.26	16	8.66	5.91	2.95	1.18	.31	1.26	.39	M 24 x 100
400	419	16.76		220	150	75	30	8	32	10	M 24 x 100
400	419	16.76		8.66	5.91	2.95	1.18	.31	1.26	.39	WI 24 X 100
	457	18.28	18	220	150	75	30	8	32	10	M 24 x 100
	+57	10.20	10	8.66	5.91	2.95	1.18	.31	1.26	.39	IVI 24 X 100
	508	20.32	20	220	150	75	30	8	32	10	M 24 x 100
500	300	20.32	20	8.66	5.91	2.95	1.18	.31	1.26	.39	WI 24 X 100
000	521	20.84		220	150	75	30	8	32	10	M 24 x 100
	321	20.04		8.66	5.91	2.95	1.18	.31	1.26	.39	WI 24 A 100



# **Ordering Codes**

Flat Steel U-B	olt *FB-*A-48.3	8-*W1
* Flat Steel U-Bol	t	FB
* Exact outside di	ameter Ø D1 (mm)	A-48.3
* Material code	Carbon Steel, uncoated Carbon Steel, zinc-plated, blue-chromated	W1 W32
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 )	<b>W5</b> Гі)
only Plastic Pi	pe Saddle *RUK-*48.	3-*PP
* Plastic Pipe Sac	ldle (Short)	RUK
* Exact outside di	ameter Ø D1 (mm)	48.3
* Material of Pipe	Saddle (see below)	PP
Please note:	All items are supplied assembled	

# **Standard Materials for Plastic Pipe Saddles**



Colour: Black Material code: PA

See pages 154 / 155 for material properties and technical information.

Alternative materials are available upon request. Please contact STAUFF for further information.

# **Applications**

- Standing or hanging installation of pipes and tubes on beams, profiles and consoles
- Design with two threaded ends allows for ideal adaptation to suit the exact outer diameter of the pipe or tube

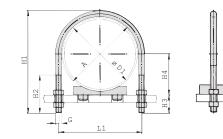


# Round Steel U-Bolt with Plastic Pipe Saddle (Short) Type RB+RUK



### **Ordering Codes** *RB+RUK-*48.3-*PP-*W1 **Clamp Assembly** One clamp assembly is consisting of one Round Steel U-Bolt (type RB), one Plastic Pipe Saddle (type RUK) and four Nuts (to DIN EN ISO 4032). * Clamp Assembly (as listed above) RB+RUK * Exact outside diameter Ø D1 (mm) 48.3 * Material of Pipe Saddle (see below) PP * Material code Carbon Steel, uncoated W1 Carbon Steel, zinc-plated, W32 blue-chromated Stainless Steel V4A W5 1.4401 / 1.4571 (AISI 316 / 316 Ti) Please note: All items are supplied non-assembled.

# **Standard Materials for Plastic Pipe Saddles**


Polypropylene Colour: Green Material code: PP Polyamide Colour: Black Material code: PA

See pages 154 / 155 for material properties and technical information.

Alternative materials are available upon request. Please contact STAUFF for further information.

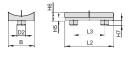
# Applications

- Standing or hanging installation of pipes and tubes on beams, profiles and consoles
- Design with two threaded ends allows for ideal adaptation to suit the exact outer diameter of the pipe or tube








Round Steel U-Bolt (type RB) with Plastic Pipe Saddle (type RUK)

Recommended Installation >DN25

Diameter Nominal		Diameter ube	Nominal Bore	Dimens	ions ( ^{mm} /in)					
DN	Ø D1 (mm)	(in)	Pipe (in)	Round S	Steel U-Bo L1	lt (Type RE H1	6) H2	H3	H4	Thread G
	. ,	.98	(,		40	73,5	41	30	17,5	- M10
20	25	.90		30	1.57	2.89	1.61	1.18	.69	WITU
20	26,9	1.06	3/4	1.18	40	73,5	41	30	18,5	M10
					1.57 48	2.89 81	1.61 48	1.18 30	.73 20	
	30	1.18		38	1.89	3.19	1.89	1.18	.79	M10
25	22.7	1.00	4	1.50	48	81	48	30	22	M10
	33,7	1.33	1		1,89	3,19	1,89	1,18	.87	IVITU
	38	1.50			56	89	48	30	24	M10
32				<b>46</b> 1.81	2.20 56	3.50 89	1.89 48	1.18 30	.94 26,2	
	42,4	1.69	1-1/4	1.01	2.20	3.50	1.89	1.18	1.03	M10
	44.5	1.70			62	100	55	35	27,2	MIO
40	44,5	1.76		52	2.44	3.94	2.17	1.38	1.07	M10
40	48,3	1.90	1-1/2	2.05	62	100	55	35	29	M10
	.,-				2.44	3.94	2.17 63	1.38 39	1.14	
	57	2.28		64	76 2.99	118 4.65	2.48	1.54	33,5 1.32	M12
50	<u></u>	0.41	0	2.52	76	118	63	39	35,2	1410
	60,3	2.41	2		2.99	4.65	2.48	1.54	1.39	M12
65	76,1	3.04	2-1/2	82	94	135	77	39	43	M12
	,,	0.01		3.23	3.70	5.31	3.03	1.54	1.69	
80	88,9	3.56	3	<b>94</b> 3.70	106 4.17	152 5.98	82 3.23	41	52,5 2.07	M12
		1		5.70	136	190	105	49	62	
100	108	4.32		120	5.35	7.48	4.13	1.93	2.44	M16
	114,3	4.57	4	4.72	136	190	105	49	65	M16
	114,3	4.07	4		5.35	7.48	4.13	1.93	2.56	WITO
	133	5.32			164	217	105	49	74,5	M16
125				<b>148</b> 5.83	6.46 164	8.54 217	4.13	1.93 49	2.93 78	
	139,7	5.59	5	0.00	6.46	8.54	4.13	1.93	3.07	M16
	450	0.00			192	247	105	51	87,5	
150	159	6.36		176	7.56	9.72	4.13	2.01	3.44	M16
150	168,3	6.73	6	6.93	192	247	105	51	92	M16
	,.	0.10	Ŭ	000	7.56	9.72	4.13	2.01	3.62	
175	193,7	7.75		<b>202</b> 7.96	218 8.58	273 10.75	105 4.13	51 2.01	105 4.13	M16
				1.50	248	311	125	59	116	
200	216	8.64		228	9.76	12.24	4.92	2.32	4.57	M20
200	219,1	8.76	8	8.98	248	311	125	59	117,5	M20
	,.	0.10	5		9.76	12.24	4.92	2.32	4.63	
	267	10.68		282	303 11.93	364 14.33	125 4.92	59 2.32	141,5 5.57	M20
250				11.10	302	364	4.92	59	5.57	
	273	10.92	10		11.89	14.33	4.92	2.32	5.69	M20
	318	12.72			352	418	125	62	167	M20
300	010	12.12		332	13.86	16.46	4.92	2.44	6.57	IVILO
	323,9	12.96	12	13.07	352	418	125	62	170	M20
					13.86 402	16.46 475	4.92 145	2.44	6.69 186	
050	355,6	14.22	14	378	15.83	18.70	5.71	2.76	7.32	M24
350	368	14.72	1	14.88	402	475	145	70	192	M24
	500	14.72			15.83	18.70	5.71	2.76	7.56	IVIZH
	406,4	16.26	16	400	452	526	145	70	211	M24
400				<b>428</b> 16.85	17.80 452	20.71 526	5.71 145	2.76 70	8.31 217,5	
	419	16.76		10.00	452	20.71	5.71	2.76	8.56	M24
	500	00.00	00		554	627	145	70	262	M04
500	508	20.32	20	530	21.81	24.69	5.71	2.76	10.31	M24
000	521	20.84		20.87	554	627	145	70	269	M24
		20.07			21.81	24.69	5.71	2.76	10.59	



# Round Steel U-Bolt with Plastic Pipe Saddle (Short) Type RB+RUK





Plastic Pipe Saddle (type RUK) (For sizes DN 20 to DN 40)

Plastic Pipe Saddle (type RUK) (From size DN 50 on)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5     20       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       21     20       22     20       3     24       3     39       10     39	D2 8 8 .31 8 .31 8 .31 8 .31 8 .31 8 .31 8 .31 8 .31 10 .39 10 .39 15 .59
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5     20       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       21     20       22     20       3     24       3     39       10     39	8 .31 8 .31 8 .31 8 .31 8 .31 8 .31 8 .31 8 .31 10 .39 10 .39 10 .39 15 .59
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       5     20       20     3       20     20       5     20       20     3       21     20       22     20       3     24       10     39       10     39	.31 8 .31 8 .31 8 .31 8 .31 8 .31 8 .31 8 .31 10 .39 10 .39 10 .39 15 .59
20         26,9         1.06         3/4         1.18         35         25         24         5         8         5           25         30         1.18         38         36         25         24         5         8         5           33,7         1.33         1         1.50         35         25         24         5         8         5           33,7         1.33         1         1.50         35         25         24         5         8         5           33,7         1.33         1         1.50         35         25         24         5         8         5           34         1.69         1-1/4         1.81         35         25         24         5         8         5           44,5         1.76         52         1.38         .98         .94         .20         .31         .2           44,5         1.76         52         1.38         .98         .94         .20         .31         .2           44,5         1.76         52         24         5         8         5         .33         .398         .94         .20         .31         .2	5     20       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       21     5       22     5       24     5       24     10       39     10	8 .31 8 .31 8 .31 8 .31 8 .31 8 .31 8 .31 10 .39 10 .39 10 .39 15 .59
26,9         1.06         34         1.38         .98         .94         .20         .31         .2           25         30,7         1.18         38         38         25         24         5         8         5           33,7         1.33         1         150         35         25         24         5         8         5           33,7         1.33         1         150         35         25         24         5         8         5           33,7         1.33         1         150         35         25         24         5         8         5           34         1.60         1.1/4         1.81         35         25         24         5         8         5           44,7         1.69         1.1/4         1.81         35         25         24         5         8         5           40         48,3         1.90         1.1/2         2.05         35         25         24         5         8         5           50         57         2.28         52         36         25         50         5         10         6         1.38         98 <td< td=""><td>20         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         24           3         24           10         39           10         39</td><td>.31 8 .31 8 .31 8 .31 8 .31 8 .31 8 .31 10 .39 10 .39 10 .39 15 .59</td></td<>	20         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         24           3         24           10         39           10         39	.31 8 .31 8 .31 8 .31 8 .31 8 .31 8 .31 10 .39 10 .39 10 .39 15 .59
30         1.18         38         35         25         24         5         8         5           33,7         1.33         1         1.50         35         25         24         5         8         5           32         38         1.50         25         24         5         8         5           32         38         1.50         46         1.38         98         .94         .20         .31         .2           32         38         1.50         46         1.38         .98         .94         .20         .31         .2           34,4         1.69         1.1/4         1.81         35         25         24         5         8         5           44,5         1.69         1.1/4         1.81         35         25         24         5         8         5           44,6         1.69         1.38         .98         .94         .20         .31         .2           44,7         1.69         1.1/2         2.05         .5         2.5         .26         .24         .5         .26         .26         .26         .26         .26         .26         .26	5       20       5       20       5       20       5       20       5       20       5       20       5       20       5       20       5       20       5       20       5       20       5       20       5       20       5       20       5       20       5       20       5       20       5       20       5       20       5       21       22       22       23       24       39       10	8 .31 8 .31 8 .31 8 .31 8 .31 8 .31 8 .31 10 .39 10 .39 10 .39 15 .59
30         1.18         38         1.38         98         94         2.0         31         2.2           33,7         1.33         1         1.50         35         25         24         5         8         5           38         1.33         1.60         35         25         24         5         8         5           38         1.50         26         24         5         8         5         6         1.20         31         2           39         42.4         1.69         1.1/4         1.88         98         94         20         31         2         2         1.1         2         1.1         2         2         2         1.1         2         2         1.38         98         94         20         31         2         2         3         3         2         3         3         2         3         3         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	20         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         24           5         24           10         339           10         39	.31 8 .31 8 .31 8 .31 8 .31 8 .31 10 .39 10 .39 10 .39 15 .59
25         33,7         1.33         1         1.50         35         25         24         5         8         5           32         38         1.50         -         46         -         38         .20         .31         .2           32         42,4         1.69         1-1/4         -         35         25         24         5         8         5           42,4         1.69         1-1/4         1.81         35         25         24         5         8         5           44,5         1.69         1-1/4         1.81         35         25         24         5         8         5           46         1.38         .98         .94         .20         .31         .2         5         1.38         .98         .94         .20         .31         .2         .33         .36         .36         .36         .31         .2         .36         .38         .36         .36         .31         .2         .36         .36         .36         .36         .36         .36         .36         .36         .36         .36         .36         .36         .36         .36         .36         .36	5     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       20     5       21     5       22     5       24     5       24     10       39     10	8 .31 8 .31 8 .31 8 .31 8 .31 8 .31 10 .39 10 .39 10 .39 15 .59
33,7         1.33         1         1.38         .98         .94         .20         .31         2           32         38         1.50 $A6$ 1.38         .98         .94         .20         .31         .2           32 $A2,4$ 1.69 $1-1/4$ $A6$ .38         .98         .94         .20         .31         .2           42,4         1.69 $1-1/4$ $A6$ .38         .98         .94         .20         .31         .2           40 $A4,5$ $1.76$ $A6$ .88         .98         .94         .20         .31         .2           40 $A4,5$ $1.76$ $Ae$ .88         .98         .94         .20         .31         .2           40 $A4,5$ $1.76$ .88         .98         .94         .20         .31         .2           40 $A6,5$ $A6,6$ .98         .94         .20         .31         .2           50 $A6,7$ $A6,7$ $A6,7$ .98         .94         .20         .39         .2           50	20         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         20           5         24           5         24           10         39           10         10	.31 8 .31 8 .31 8 .31 8 .31 10 .39 10 .39 10 .39 15 .59
38         1.00         46         35         25         24         5         8         5           42,4         1.69         1.14         1.81         35         25         24         5         8         5           40         1.49         1.69         1.14         1.81         35         25         24         5         8         5           40         44,5         1.69         1.76         25         24         5         8         5           40         48,3         1.69         1.76         25         24         5         8         5           48,3         1.90         1-1/2         205         1.38         .98         .94         .20         .31         .2           46,3         1.90         1-1/2         205         1.38         .98         .94         .20         .31         .2           50         50         5         1.00         .20         .99         .2         .2         .2         .2         .2         .2         .2         .2         .2         .2         .2         .2         .2         .2         .2         .2         .2         .2         .2 </td <td>5     20       20     5       20     5       20     5       20     6       20     6       24     5       24     6       30     24       10     39       10     10</td> <td>8 .31 8 .31 8 .31 8 .31 10 .39 10 .39 10 .39 15 .59</td>	5     20       20     5       20     5       20     5       20     6       20     6       24     5       24     6       30     24       10     39       10     10	8 .31 8 .31 8 .31 8 .31 10 .39 10 .39 10 .39 15 .59
38         1.30         66         46         1.38         .98         .94         .20         .31         2.20           42,4         1.69         1-1/4         1.81         35         25         24         5         8         5           44,5         1.76         -         35         25         24         5         8         5           40         44,5         1.76         -         35         25         24         5         8         5           40         1.90         1-1/2         205         35         25         24         5         8         5           48,3         1.90         1-1/2         205         35         25         24         5         8         5         5         5         5         31         2         2         31         2         2         31         2         31         2         31         2         31         2         31         2         31         2         31         2         31         2         31         2         31         2         31         2         31         2         31         2         31         31         31 </td <td>5     20       5     20       5     20       5     20       6     24       6     24       10     39       10     10</td> <td>8 .31 8 .31 8 .31 10 .39 10 .39 10 .39 15 .59</td>	5     20       5     20       5     20       5     20       6     24       6     24       10     39       10     10	8 .31 8 .31 8 .31 10 .39 10 .39 10 .39 15 .59
42,4         1.69         1-1/4         1.81         35         25         24         5         8         5           40         44,5         1.76         -         -         -         1.38         .98         .94         .20         .31         .2           40         48,3         1.76         -         -         5         1.38         .98         .94         .20         .31         .2           48,3         1.90         1-1/2         2.05         35         25         24         5         8         5           50         48,3         1.90         1-1/2         2.05         35         25         24         5         8         5         1.0         .20         .31         .2         .2         .31         .2         .31         .2         .31         .2         .31         .2         .31         .2         .31         .2         .31         .2         .31         .2         .31         .2         .33         .2         .38         .2         .38         .2         .39         .2         .39         .2         .39         .2         .33         .3         .3         .3         .3	20         20           5         20           5         20           5         20           6         24           6         24           10         39           10         10	.31 8 .31 8 .31 10 .39 10 .39 10 .39 10 .39 15 .59
44,5         1.76         6         6         1.38         9.86         9.44         2.00         3.1         2.2           40         48,3         1.76         2.65         25         24         5         8         5           48,3         1.90         1-1/2         2.05         25         25         24         5         8         5           50         48,3         1.90         1-1/2         2.05         25         24         5         8         5           50         5         1.38         .98         .94         .20         .31         .2           50         5         5         5         5         5         10         6           60,3         2.41         7         28         25         50         5         10         6           65         7         1.01         .98         1.97         .20         .39         .2           66         7.61         3.04         2.1/2         82         38         25         50         5         10         6           100         8.99         3.66         3         1.50         1.97         2.06         31 </td <td>5       20       5       20       3       24       3       24       3       24       3       24       3       24       30       39       10</td> <td>8 .31 8 .31 10 .39 10 .39 10 .39 10 .39 15 .59</td>	5       20       5       20       3       24       3       24       3       24       3       24       3       24       30       39       10	8 .31 8 .31 10 .39 10 .39 10 .39 10 .39 15 .59
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20       5       20       5       24       5       24       5       24       6       24       10       39       10	.31 8 .31 10 .39 10 .39 10 .39 15 .59
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5     20       20     20       6     24       6     24       6     24       7     24       8     24       10     39       10     10	8 .31 10 .39 10 .39 10 .39 15 .59
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20 5 24 5 24 5 24 24 10 39 10	.31 10 .39 10 .39 10 .39 15 .59
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 24 5 24 5 24 10 39 10	10 .39 10 .39 10 .39 15 .59
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24 5 24 5 24 10 39 10	.39 10 .39 10 .39 15 .59
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6 24 5 24 10 39 10	10 .39 10 .39 15 .59
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	24 5 24 10 39 10	.39 10 .39 15 .59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 24 10 39 10	10 .39 15 .59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24 10 39 10	.39 15 .59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 39 10	15 .59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	39 10	.59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		.59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		.59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		.59 15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	.59
150         159         0.30         176         5.51         3.54         2.95         .31         1.02         .3           150         169.2         6.72         6         6.93         140         90         75         8         26         10		25
<b>169.2</b> 6.72 6 6.93 140 90 75 8 26 10	39	.98
		25
5.51 3.54 2.95 .31 1.02 .3	39	.98
		25
7.96 5.51 3.54 2.95 .31 1.02 .3		.98
<b>216</b> 8.64 <b>140</b> 90 75 8 26 11	10 1	25
200 228 5.51 3.54 2.95 .31 1.02 .3		.98
<b>210.1</b> 8.76 8 8.98 140 90 75 8 26 1		25
5.51 3.54 2.95 .31 1.02 .3		.98 25
<b>267</b> 10.68 <b>282</b> 5.51 3.54 2.95 31 1.02 33		.98
230 11 10 140 90 75 8 26 1		.90
	.39	.98
220 150 75 8 32 1		30
<b>318</b> 12.72 <b>332</b> 8.66 5.91 2.95 31 1.26 3		1.18
300 <b>13.07</b> 220 150 75 8 32 1		30
8.66 5.91 2.95 .31 1.26 .3		1.18
		30
378 8.66 5.91 2.95 .31 1.26 .3		1.18
<b>368</b> 14 72 14.88 220 150 75 8 32 1		30
8.66 5.91 2.95 .31 1.26 .3		1.18
		30
428 8.00 5.91 2.95 .31 1.20 .3	39	1.18
		30 1.18
220 150 75 8 32 1	10	30
<b>508</b> 2.32 20 <b>530</b> 8.66 5.01 2.05 31 1.26 3	10 39	1.18
2 87 220 150 75 8 32 1	10 39 10 3	1.10
<b>521</b> 2.84 2.07 2.20 100 70 0 02 11	10 39 10 39 39	30



# **Ordering Codes**

Round Steel U-Bolt *RB-*A-52-*W1-*COMPL One Round Steel U-Bolt (type RB) inIcludes four Nuts (to DIN EN ISO 4032).									
* Round Steel U-Bolt RB									
* Dimension A (mr	m)	A-52							
* Material code	W1 W32								
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 31	16 Ti) <b>W5</b>							
only Plastic Pi	pe Saddle *RUK-*4	8.3-*PP							
* Plastic Pipe Sade	dle (Short)	RUK							
* Exact outside diameter Ø D1 (mm) 48.3									
* Material of Pipe	Saddle (see below)	PP							

# **Standard Materials for Plastic Pipe Saddles**

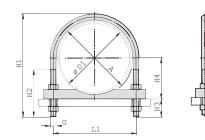


**Polyamide** Colour: Black Material code: **PA** 

See pages 154 / 155 for material properties and technical information.

Alternative materials are available upon request. Please contact STAUFF for further information.

# **Applications**


- Standing or hanging installation of pipes and tubes on beams, profiles and consoles
- Design with two threaded ends allows for ideal adaptation to suit the exact outer diameter of the pipe or tube



# Round Steel U-Bolt with Plastic Pipe Saddle (Long) **Type RB+RUL**



# Diameter Outside Diameter Nominal Dimensions (mm/in) ominal Pine / Tube **Ordering Codes Clamp Assembly** *RB+RUL-*48.3-*PP-*W One clamp assembly is consisting of one Round Steel U-Be (type RB), one Plastic Pipe Saddle (type RUL) and four Nuts (to DIN EN ISO 4032). * Clamp Assembly (as listed above) RB+RU * Exact outside diameter Ø D1 (mm) 48 * Material of Pipe Saddle (see below) * Material code Carbon Steel, uncoated Carbon Steel, zinc-plated, W blue-chromated Stainless Steel V4A V 1.4401 / 1.4571 (AISI 316 / 316 Ti) Please note: All items are supplied non-assembled. **Standard Materials for Plastic Pipe Saddles** Polypropylene Colour: Green Material code: PP Polyamide Colour: Black Material code: PA See pages 154 / 155 for material properties and technical Alternative materials are available upon request. Please contact STAUFF for further information. **Applications** - Standing or hanging installation of pipes and tubes on beams, profiles and consoles Design with two threaded ends allows for ideal adaptation to suit the exact outer diameter of the







Round Steel U-Bolt (type RB) with Plastic Pipe Saddle (type RUL)

**Recommended Installation** >DN50

Nominal	Pipe / 1 Ø D1	Гube	Bore Pipe	Round S	Steel U-Bo	lt (Type RB	)			
DN	(mm)	(in)	(in)	A	L1	H1	, H2	H3	H4	Thread G
	25	.98			40	73,5	41	30	17,5	M10
20	20	.90		30	1.57	2.89	1.61	1.18	.69	INITO
20	26,9	1.06	3/4	1.18	40	73,5	41	30	18.5	M10
	20,0	1.00	0/ T		1.57	2.89	1.61	1.18	.73	into
	30	1.18		0.0	48	81	48	30	20	— M10
25				38	1.89	3.19	1.89	1.18	.79	
	33,7	1.33	1	1.50	48	81	48	30	22	M10
					1.89 56	3.19 89	1.89 48	1.18 30	.87 24	
	38	1.50		46	2.20	3.50	1.89	1.18	.94	M10
32				1.81	56	89	48	30	26,2	
	42,4	1.69	1-1/4		2.20	3.50	1.89	1.18	1.03	M10
	44 5	1.70			62	100	55	35	27,2	M10
40	44,5	1.76		52	2.44	3.94	2.17	1.38	1.07	M10
40	48,3	1.90	1-1/2	2.05	62	100	55	35	29	M10
	40,3	1.30	1-1/2		2.44	3.94	2.17	1.38	1.14	WITU
	57	2.28			76	118	63	39	33,5	M12
50	••	2.20		64	2.99	4.65	2.48	1.54	1.32	
	60,3	2.41	2	2.52	76	118	63	39	35,2	- M12
				0.0	2.99	4.65	2.48	1.54	1.39	
65	76,1	3.04	2-1/2	<b>82</b> 3.23	94	135 5.31	2.02	39	43	M12
				3.23 94	3.70	152	3.03 82	1.54 39	1.69 54,5	
80	88,9	3.56	3	<b>94</b> 3.70	4.17	5.98	3.23	1.54	2.15	M12
				0.70	136	190	105	47	64	
	108	4.32		120	5.35	7.48	4.13	1.85	2.52	— M16
100		4.57		4.72	136	190	105	47	67	1440
	114,3	4.57	4		5.35	7.48	4.13	1.85	2.64	M16
	100	5.00			164	217	105	47	76,5	M16
125	133	5.32		148	6.46	8.54	4.13	1.85	3.01	M16
120	139,7	5.59	5	5.83	164	217	105	47	80	M16
	103,1	0.00	5		6.46	8.54	4.13	1.85	3.15	WITU
	159	6.36			192	247	105	47	91,5	M16
150		0.00		176	7.56	9.72	4.13	1.85	3.60	
	168,3	6.73	6	6.93	192	247	105	47	96	M16
				202	7.56	9.72	4.13	1.85	3.78	
175	193,7	7.75		<b>202</b> 7.96	218 8.58	273 10.75	105 4.13	47 1.85	109 4.29	— M16
				1.30	248	311	125	55	120	
	216	8.64		228	9.76	12.24	4.92	2.17	4.72	M20
200		0		8.98	248	311	125	55	121,5	
	219,1	8.76	8		9.76	12.24	4.92	2.17	4.78	M20
	067	10.00			303	364	125	55	145,5	M20
250	267	10.68		282	11.93	14.33	4.92	2.17	5.73	M20
250	273	10.92	10	11.10	302	364	125	55	148,5	M20
	213	10.92	10		11.89	14.33	4.92	2.17	5.85	IVIZU
	318	12.72			352	418	125	55	174	M20
300	515	12.12		332	13.86	16.46	4.92	2.17	6.85	
	323,9	12.96	12	13.07	352	418	125	55	177	M20
					13.86	16.46	4.92	2.17	6.97	
	355,6	14.22	14	378	402 15.83	475 18.70	145 5.71	63 2.48	193 7.60	M24
350				14.88	402	475	145	63	199	
	368	14.72		14.00	402	18.70	5.71	2.48	7.83	M24
					452	526	145	63	218	
	406,4	16.26	16	428	17.80	20.71	5.71	2.48	8.58	M24
400		10		16.85	452	526	145	63	224,5	
	419	16.76			17.80	20.71	5.71	2.48	8.84	— M24
	500	00.00	00		554	627	145	63	269	1404
500	508	20.32	20	530	21.81	24.69	5.71	2.48	10.59	M24
500	521	20.04		20.87	554	627	145	63	276	M24
	071	20.84	1		21.81	24.69	5.71	2.48	10.87	— M24

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

information.

pipe or tube



# **Round Steel U-Bolt with Plastic Pipe Saddle (Long)** Type RB+RUL



# Plastic Pipe Saddle (type RUL)

Diameter Nominal	Outside Pipe / T	Diameter ube	Nominal Bore	nal Dimensions ( ^{mm} / _{in} )						
DN	Ø D1		Pipe		ipe Saddle		D	UE	110	6.04
DN	(mm)	(in)	(in)	Α	L2	L3	B	H5	H6	Ø D4
	25	.98		30	75 2.95	40	30	5 .20	.47	.43
20				1.18	75	40	30	5	12	11
	26,9	1.06	3/4	1.10	2.95	1.57	1.18	.20	.47	.43
					80	48	30	5	12	11
	30	1.18		38	3.15	1.89	1.18	.20	.47	.43
25	22.7	1.33	1	1.50	80	48	30	5	12	11
	33,7	1.55			3.15	1.89	1.18	.20	.47	.43
	38	1.50			90	56	30	5	12	11
32				46	3.54	2.20	1.18	.20	.47	.43
	42,4	1.69	1-1/4	1.81	90 3.54	56 2.20	30	5 .20	.47	.43
					95	62	35	5	15	.43
	44,5	1.76		52	3.74	2.44	1.38	.20	.59	.43
40				2.05	95	62	35	5	15	11
	48,3	1.90	1-1/2	2.00	3.74	2.44	1.38	.20	.59	.43
		0.00			110	76	35	5	15	14
50	57	2.28		64	4.33	2.99	1.38	.20	.59	.55
50	60,3	2.41	2	2.52	110	76	35	5	15	14
	00,5	2.41	2		4.33	2.99	1.38	.20	.59	.55
65	76,1	3.04	2-1/2	82	135	94	35	5	15	14
00	,.	0.01	2 .72	3.23	5.31	3.70	1.38	.20	.59	.55
80	88,9	3.56	3	94	145	106	40	10	20	14
				3.70	5.71	4.17	1.57 40	.39	.79	.55
	108	4.32		120	190 7.48	136 5.35	1.57	10 .39	20 .79	18 .71
100				4.72	190	136	40	10	20	18
	114,3	4.57	4	7.72	7.48	5.35	1.57	.39	.79	.71
		5.00			220	164	40	10	20	18
125	133	5.32		148	8.66	6.46	1.57	.39	.79	.71
	139,7	5.59	5	5.83	220	164	40	10	20	18
	139,7	5.55	5		8.66	6.46	1.57	.39	.79	.71
	159	6.36			250	192	50	12	25	18
150				176	9.84	7.56	1.97	.47	.98	.71
	168,3	6.73	6	6.93	250 9.84	192 7.56	50 1.97	.47	25 .98	18 .71
				202	270	218	50	12	25	18
175	193,7	7.75		7.96	10.63	8.58	1.97	.47	.98	.71
				1.00	315	248	50	12	25	22
000	216	8.64		228	12.40	9.76	1.97	.47	.98	.87
200	219,1	8.76	8	8.98	315	248	50	12	25	22
	213,1	0.70	0		12.40	9.76	1.97	.47	.98	.87
	267	10.68			370	302	50	12	25	22
250				282	14.57	11.89	1.97	.47	.98	.87
	273	10.92	10	11.10	370 14.57	302 11.89	50 1.97	.47	25 .98	.87
					420	352	60	15	30	22
	318	12.72		332	16.54	13.86	2.36	.59	1.18	.87
300		10.00	10	13.07	420	352	60	15	30	22
	323,9	12.96	12		16.54	13.86	2.36	.59	1.18	.87
	255 G	14.00	14		480	402	60	15	30	26
350	355,6	14.22	14	378	18.90	15.83	2.36	.59	1.18	1.02
000	368	14.72		14.88	480	402	60	15	30	26
					18.90	15.83	2.36	.59	1.18	1.02
	406,4	16.26	16	400	540	452	60	15	30	26
400				428	21.26	17.80 452	2.36	.59	1.18	1.02
	419	16.76		16.85	540 21.26	452	60 2.36	15 .59	30 1.18	26
					640	554	60	15	30	26
	508	20.32	20	530	25.20	21.81	2.36	.59	1.18	1.02
500	F04	00.04		20.87	640	554	60	15	30	26
521	521	20.84			25.20	21.81	2.36	.59	1.18	1.02



# **Ordering Codes**

Round Steel U-Bolt*RB-*A-52-*W1-*COMPL									
One Round Steel U-Bolt (type RB) inIcludes four Nuts (to DIN EN ISO 4032).									
* Round Steel U-E	Bolt	RB							
* Dimension A (m	m)	A-52							
* Material code	Carbon Steel, uncoated	W1							
	Carbon Steel, zinc-plated, blue-chromated	W32							
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti)	W5							
only Plastic Pi	ipe Saddle *RUL-*48.3-	*PP							
* Plastic Pipe Sad	ldle (Long)	RUL							
* Exact outside diameter Ø D1 (mm) 48.3									
* Material of Pipe	Saddle (see below)	PP							

# **Standard Materials for Plastic Pipe Saddles**



Polyamide Colour: Black Material code: PA

See pages 154 / 155 for material properties and technical information.

Alternative materials are available upon request. Please contact STAUFF for further information.

# **Applications**

- Standing or hanging installation of pipes and tubes on beams, profiles and consoles
- Design with two threaded ends allows for ideal adaptation to suit the exact outer diameter of the pipe or tube

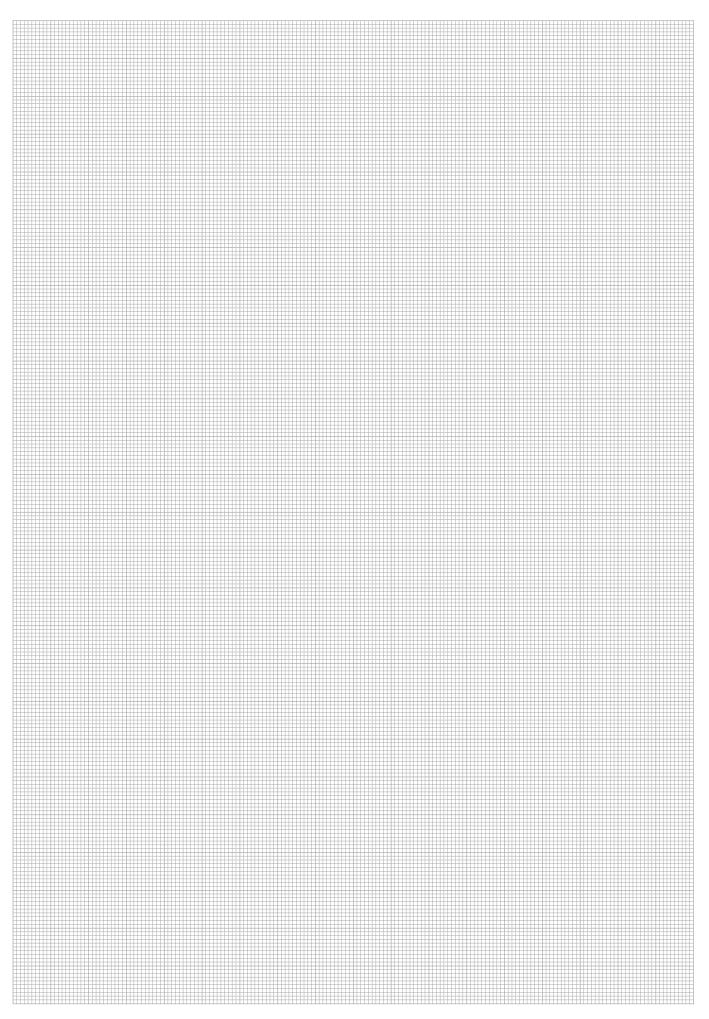
Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

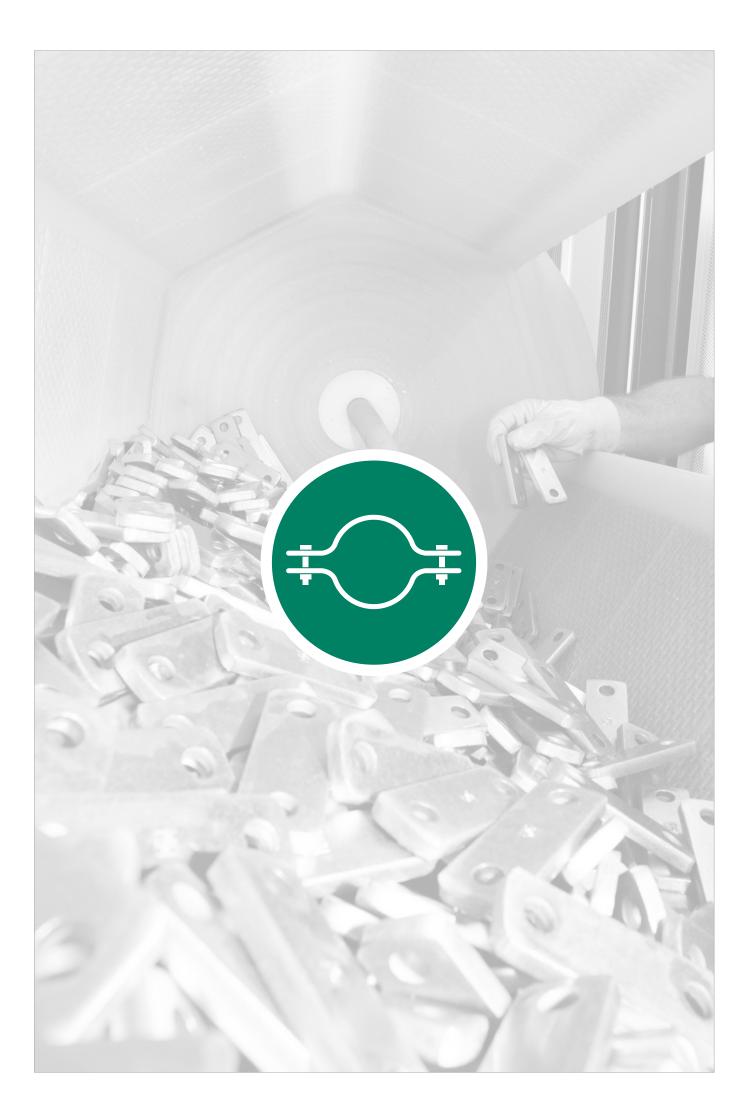
Κ

### R

# **Round Steel U-Bolt (without Plastic Pipe Saddle)** Type RBD (DIN 3570, Type A)




# Ĥ


# Round Steel U-Bolt (type RBD)

Ordering Codes			Pipe / T	e Diameter übe	Bore					
	DN	Ø D1 (mm) (in)		Pipe (in)	Round Steel U-Bolt (Type RBD)           A         L         H1         H2         Thread G					
lamp Assemb	ly *RBD-*A-30-*W1-*COMPL	DI	. ,	. ,	(11)		40	70	40	
	ly is consisting of one Round Steel U-Bolt	00	25	.98		30	1.57	2.76	1.57	M10
•	g to DIN 3570, Type A) and two Nuts	20	26,9	1.06	3/4	1.18	40	70	40	M10
o DIN EN ISO 403			20,9	1.00	3/4		1.57	2.76	1.57	INITO
			30	1.18			48	76	40	M10
Clamp Assembly	(as listed above) RBD	25				38	1.89 48	2.99 76	1.57 40	
			33,7	1.33	1	1.50	40	2.99	1.57	M10
Dimension A (mr	n) <b>A-30</b>						56	86	50	
Material code	Carbon Steel, uncoated W1	32	38	1.50		46	2.20	3.39	1.97	M10
	Carbon Steel, zinc-plated, W32	32	42,4	1.69	1-1/4	1.81	56	86	50	M10
	blue-chromated		72,7	1.00	1 1/4		2.20	3.39	1.97	MITO
	Stainless Steel V4A		44,5	1.76		50	62	92	50	M10
	1.4401 / 1.4571 (AISI 316 / 316 Ti) <b>W5</b>	40		_		<b>52</b> 2.05	2.44 62	3.62 92	1.97 50	
lesse note: All iter	ns are supplied non-assembled.		48,3	1.90	1-1/2	2.00	2.44	3.62	1.97	M10
icuse note. All Itel				0.00			76	109	50	1440
		50	57	2.28		64	2.99	4.29	1.97	M12
plications		50	60,3	2.41	2	2.52	76	109	50	M12
			00,0	E. (1	-		2.99	4.29	1.97	1112
Standing or hangir	ng installation of pipes and	65	76,1	3.04	2-1/2	<b>82</b> 3.23	94 3.70	125 4.92	50 1.97	M12
ubes on beams, p	rofiles and consoles					3.23 94	106	138	50	
-	readed ends allows for ideal	80	88,9	3.56	3	3.70	4.17	5.43	1.97	M12
adaptation to suit	the exact outer diameter of the		100	4.00			136	171	60	MIC
pipe or tube		100	108	4.32		120	5.35	6.73	2.36	M16
		100	114,3	4.57	4	4.72	136	171	60	M16
			,.				5.35	6.73	2.36	
			133	5.32		148	164 6.46	191 7.52	60 2.36	M16
		125		_		5.83	164	191	60	
			139,7	5.59	5	5.00	6.46	7.52	2.36	M16
		150	150	6.26			192	217	60	M16
			159	6.36		176	7.56	8.54	2.36	INITO
		100	168,3	6.73	6	6.93	192	217	60	M16
					-	202	7.56	8.54	2.36	
		175	193,7	7.75		<b>202</b> 7.96	218 8.58	249 9.80	60 2.36	M16
						1.30	248	283	70	
		000	216	8.64		228	9.76	11.14	2.76	M20
		200	219,1	8.76	8	8.98	248	283	70	M20
			213,1	0.70	0		9.76	11.14	2.76	IVIZU
			267	10.68		000	303	334	70	M20
		250				<b>282</b> 11.10	11.93 302	13.15 334	2.76 70	
			273	10.92	10	11.10	302	13.15	2.76	M20
			010	10.70			352	385	70	HOO
		300	318	12.72		332	13.86	15.16	2.76	M20
		300	323,9	12.96	12	13.07	352	385	70	M20
			020,0	12.00	12		13.86	15.16	2.76	WILD .
			355,6	14.22	14	270	402	435	70	M24
		350		_		<b>378</b> 14.88	15.83 402	17.13 435	2.76	
			368	14.72		14.00	15.83	17.13	2.76	M24
			100.1	10.00	10		452	487	70	140.4
		400	406,4	16.26	16	428	17.80	19.17	2.76	M24
		400	419	16.76		16.85	452	487	70	M24
			413	10.70			17.80	19.17	2.76	M24
			508	20.32	20	500	554	589	70	M24
		500				<b>530</b> 20.87	21.81 554	23.19 589	2.76 70	
		000	521	20.84	1	20.01	1004	1009	1/0	M24

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.



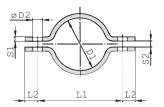


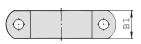


# ®

200	Metal Pipe Clamp with Tension Clearance Two-Bolt Design DIN 3567-A	136
	Metal Pipe Clamp with Tension Clearance Three-Bolt Design (Extended to One Side) DIN 3567-B	137
	Heavy Saddle with Tension Clearance Single-Bolt Design DIN 1592	138
s	Heavy Saddle with Tension Clearance Two-Bolt Design DIN 1593	139
5	Light Saddle with Tension Clearance Single-Bolt Design DIN 1596	140
n	Light Saddle with Tension Clearance Two-Bolt Design DIN 1597	141

L


# Metal Pipe Clamp with Tension Clearance (DIN 3567-A) Two-Bolt Design



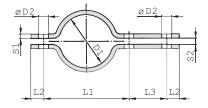

Ordering Codes									
Metal Pipe Clamp *DIN3567-A*-20*W1									
	One metal pipe clamp is consisting of two clamp halves. Hexagon head bolts and nuts are not included.								
* Metal Pipe Clarr	np to DIN 3567, type A DIN3567-A								
* STAUFF Group (	Ø D1) -20								
* Material code	Carbon Steel, uncoated W1								
	Carbon Steel, hot-dip galvanised W40								
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti) <b>W5</b>								
Clamp Assem	bly *DIN3567-A*-20*W1*COMPL								
•	bly is consisting of two clamp halves, I bolts and two hexagon head nuts.								
* Metal Pipe Clam	np to DIN 3567, type A DIN3567-A								
* STAUFF Group (	Ø D1) -20								
* Material code	Carbon Steel, uncoated W1								
	Carbon Steel, hot-dip galvanised W40								
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316 Ti) <b>W5</b>								
* Clamp assembly	with bolts and nuts COMPL								
Please note: All ite	ms are supplied non-assembled.								

# **Applications**

 Installation of pipes, tubes and other construction elements on beams, profiles and consoles






STAUFF Group	F Nominal Size		Dimensio	ns ( ^{mm} /in)					Accessories		
Ø D1	(mm)	Pipe (in)	L1	L2	S1	S2	D2	B1	Hexagon Head Bolts (Hexagon Head Nuts)		
וטע	(iiiii)	(11)	57	15	5	7	11.5	30	(Hexayon Head Nuts)		
20			2.24	.59	.20	.28	.45	1.18			
	15		59	15	5	7	11.5	30			
22			2.32	.59	.20	.28	.45	1.18			
05			62	15	5	7	11.5	30			
25	20		2.44	.59	.20	.28	.45	1.18			
27	20	3/4	66	15	5	7	11.5	30			
21		5/4	2.60	.59	.20	.28	.45	1.18			
30			68	15	5	7	11.5	30	M10 x 30		
	25		2.68	.59	.20	.28	.45	1.18	(M10)		
34		1	72 2.83	15 .59	5 .20	.28	11.5 .45	30 1.18	3/8–16 UNC x 1-1/4 (3/8–16 UNC)		
			76	15	.20	.20	.45	30	(3/0-10 0110)		
38			2.99	.59	.20	.28	.45	1.18			
	32		82	15	5	7	11.5	30			
43		1-1/4	3.23	.59	.20	.28	.45	1.18			
45			84	15	5	7	11.5	30			
45	40		3.31	.59	.20	.28	.45	1.18			
49	40	1-1/2	88	15	5	7	11.5	30			
10		1 1/2	3.46	.59	.20	.28	.45	1.18			
57			104	18	6	9	14	40			
	50		4.09	.71	.24	.35	.55	1.57			
61		2	108	18 .71	6 .24	9 .35	14 .55	40	M12 x 35		
			4.25 122	.71	.24	.35	.55	1.57 40	(M12) 7/16–14 UNC x 1-3/8		
77	65	2-1/2	4.80	.71	.24	.35	.55	1.57	(7/16–14 UNC)		
					136	18	6	9	14	40	
89	80	3	5.35	.71	.24	.35	.55	1.57			
100			172	24	8	11	18	50			
108	100		6.77	.94	.31	.43	.71	1.97			
115	100	4	178	24	8	11	18	50			
115		4	7.01	.94	.31	.43	.71	1.97			
133			196	24	8	11	18	50			
	125		7.72	.94	.31	.43	.71	1.97			
140			204	24	8	11	18	50			
			8.03 222	.94 24	.31 8	.43	.71	1.97 50	M16 x 45 (M16)		
159			8.74	.94	.31	.43	.71	1.97	5/8–11 UNC x 1-3/4		
	150		232	24	8	11	18	50	(5/8–11 UNC)		
169			9.13	.94	.31	.43	.71	1.97			
104	175		258	24	8	11	18	50			
194	175		10.16	.94	.31	.43	.71	1.97			
216			280	24	8	11	18	50			
	200		11.02	.94	.31	.43	.71	1.97			
220			284	24	8	11	18	50	_		
			11.18	.94	.31	.43	.71	1.97			
267			342 13.46	30 1.18	8 .31	.55	23 .91	60 2.36	-		
	250		348	30	8	14	23	60			
273			13.70	1.18	.31	.55	.91	2.36	M20 x 50		
210			392	30	8	14	23	60	(M20)		
318	300		15.43	1.18	.31	.55	.91	2.36	3/4-10 UNC x 2		
324	300		398	30	8	14	23	60	(3/4-10 UNC)		
324			15.67	1.18	.31	.55	.91	2.36			
368	350		444	30	8	14	23	60			
			17.48	1.18	.31	.55	.91	2.36			
407			498	36	10	18	27	70	M0400		
	400		19.61 510	1.42 36	.39 10	.71 18	1.06	2.76 70	M24 x 60		
419			10.08	1.42	.39	.71	1.06	2.76	(M24) 7/8–9 UNC 2-3/8		
			614	36	10	18	27	70	(7/8–9 UNC)		
521	500		24.17	1.42	.39	.71	1.06	2.76			
								2.70			







# Metal Pipe Clamp with Tension Clearance (DIN 3567-B) Three-Bolt Design (Extended to One Side)







STAUFF Nominal Size Group		Size	Dimens	ions ( ^{mm} /i		Accessories				
Ø D1	(mm)	Pipe (in)	Pipe (in) L1 L2 L3 S1 S2 D2 B1				Hexagon Head Bolts (Hexagon Head Nuts)			
	(11111)	(11)	57	15	46	5	7	11.5	30	(nexayon neau nuis)
20			2.24	.59	1.81	.20	.28	.45	1.18	
	15		59	15	46	5	7	11.5	30	
22			2.32	.59	1.81	.20	.28	.45	1.18	
E			62	15	46	5	7	11.5	30	
25	20		2.44	.59	1.81	.20	.28	.45	1.18	
7	20	3/4	66	15	46	5	7	11.5	30	
'		0/4	2.60	.59	1.81	.20	.28	.45	1.18	
0			68	15	46	5	7	11.5	30	M10 x 30
-	25		2.68	.59	1.81	.20	.28	.45	1.18	(M10)
4		1	72	15	46	5	7	11.5	30	3/8–16 UNC x 1-1/4 (3/8–16 UNC)
			2.83 76	.59 15	1.81 46	.20 5	.28	.45 11.5	1.18 30	
8			2.99	.59	1.81	.20	.28	.45	1.18	_
	32		82	15	46	5	7	11.5	30	
3		1-1/4	3.23	.59	1.81	.20	.28	.45	1.18	
_			84	15	46	5	7	11.5	30	
5	40		3.31	.59	1.81	.20	.28	.45	1.18	
0	40	1 1/0	88	15	46	5	7	11.5	30	
9		1-1/2	3.46	.59	1.81	.20	.28	.45	1.18	
7			104	18	54	6	9	14	40	
·	50		4.09	.71	2.13	.24	.35	.55	1.57	
1	50	2	108	18	54	6	9	14	40	M12 x 35
•		2	4.25	.71	2.13	.24	.35	.55	1.57	(M12)
7	65	2-1/2	122	18	54	6	9	14	40	7/16–14 UNC x 1-3/8
	00		4.80	.71	2.13	.24	.35	.55	1.57	(7/16–14 UNC)
9	80	3	136	18	54	6	9	14	40	
-		-	5.35	.71	2.13	.24	.35	.55	1.57	
08			172 6.77	24 .94	70	8	.43	18	50	
	100		178	24	2.76	8	.43	.71 18	1.97 50	
15		4	7.01	.94	2.76	.31	.43	.71	1.97	-
			196	24	70	8	11	18	50	
33			7.72	.94	2.76	.31	.43	.71	1.97	
	125		204	24	70	8	11	18	50	
40			8.03	.94	2.76	.31	.43	.71	1.97	M16 x 45
-0			222	24	70	8	11	18	50	(M16)
59	150		8.74	.94	2.76	.31	.43	.71	1.97	5/8-11 UNC x 1-3/4
69	150		232	24	70	8	11	18	50	(5/8-11 UNC)
55			9.13	.94	2.76	.31	.43	.71	1.97	
94	175		258	24	70	8	11	18	50	
			10.16	.94	2.76	.31	.43	.71	1.97	
16			280	24	70	8	11	18	50	
-	200		11.02	.94	2.76	.31	.43	.71	1.97	-
20			284	24	70	8	11	18	50	_
			11.18 342	.94 30	2.76	.31 8	.43	.71 23	1.97 60	-
67			13.46	1.18	86 3.39	.31	.55	.91	2.36	-
	250		348	30	86	8	14	23	60	-
73			13.70	1.18	3.39	.31	.55	.91	2.36	M20 x 50
10			392	30	86	8	14	23	60	(M20)
18	200		15.43	1.18	3.39	.31	.55	.91	2.36	3/4-10 UNC x 2
04	300		398	30	86	8	14	23	60	(3/4-10 UNC)
24			15.67	1.18	3.39	.31	.55	.91	2.36	
68	350		444	30	86	8	14	23	60	
00	350		17.48	1.18	3.39	.31	.55	.91	2.36	
07			498	36	104	10	18	27	70	
	400		19.61	1.42	4.09	.39	.71	1.06	2.76	M24 x 60
19	100		510	36	104	10	18	27	70	(M24)
			10.08	1.42	4.09	.39	.71	1.06	2.76	7/8-9 UNC 2-3/8
21	500		614	36	104	10	18	27	70	(7/8–9 UNC)
	1	1	24.17	1.42	4.09	.39	.71	1.06	2.76	

Ordering Codes
Metal Pipe Clamp

*DIN3567-B*-20*W1

One metal pipe clamp is consisting of two clamp halves. Hexagon head bolts and nuts are not included.

* Metal Pipe Clamp to DIN 3567, type B DIN35						
* STAUFF Group (	-20					
* Material code	Carbon Steel, uncoated	W1				
	Carbon Steel, hot-dip galvar	nised W40				
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 /	316 Ti) <b>W5</b>				
Clamp Assem	bly *DIN3567-B*-20*W	1*COMPL				

One clamp assembly is consisting of two clamp halves, three hexagon head bolts and three hexagon head nuts.

* Metal Pipe Clam	DIN3567-B	
* STAUFF Group (	-20	
* Material code	Carbon Steel, uncoated	W1
	Carbon Steel, hot-dip galvar	ised W40
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 /	316 Ti) <b>W5</b>
* Clamp assembly	with bolts and nuts	COMPL
Please note: All ite	ms are supplied non-assembl	ed

# Applications

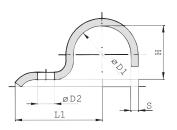
 Installation of pipes, tubes and other construction elements on beams, profiles and consoles

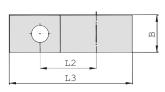
Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

137

# R STAUFF

# Heavy Saddle with Tension Clearance (DIN 1592)


Single-Bolt Design



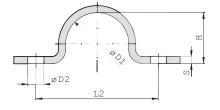

Ordering Codes									
Heavy Saddle *DIN1592-*7-*W6									
* Heavy Saddle to DIN 1592 DIN159									
* STAUFF Group (Ø D1)									
* Material code	Carbon Steel, uncoated	W1							
	Carbon Steel, zinc-plated and thick-film passivated	W66							
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 /	316 Ti) <b>W5</b>							

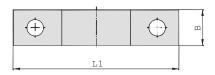
# **Applications**

 Installation of pipes, tubes, poles and other round components directly on the substrate (floor, wall or ceiling)






STAUFF Group	Diameter R	ange	Dimensions ( ^{mm} / _{in} )							
Ø D1	(mm)	(in)	L1	L2	L3	Н	D2	В	S	
7	5,5 7	.2228	22	14	27,5	5	6,6	16	2	
1	5,5 7	.2220	.87	.55	1.08	.20	.26	.63	.08	
9	79	.2835	27	18	33,5	6	6,6	20	2	
5	15	.2000	1.06	.71	1.32	.24	.26	.79	.08	
13	9,5 13	.3951	40	25	49,5	9	11	25	3	
15	9,0 10	.0301	1.57	.98	1.95	.35	.43	.98	.12	
15,5	13 15,5	.5161	41	26	52	12	11	25	3	
15,5	1010,0	.0101	1.61	1.02	2.05	.47	.43	.98	.12	
19	15,5 19	.6175	43	28	55,5	15	11	25	3	
19	10,0 19	.0170	1.69	1.10	2.19	.59	.43	.98	.12	
23	20 23	.7991	51	35	67	19	14	30	5	
20	20 23	.7991	2.01	1.38	2.64	.75	.55	1.18	.20	
26	23 26	.91 1.02	52	36	70	22	14	30	5	
20	23 20		2.05	1.42	2.76	.87	.55	1.18	.20	
00 F	00 00 5	1 00 1 10	53	37	73	24	14	30	5	
28,5	26 28,5	1.02 1.12	2.09	1.46	2.87	.94	.55	1.18	.20	
04	00 5 01	110 100	55	39	75,5	27	14	30	5	
31	28,5 31	1.12 1.22	2.17	1.54	2.97	1.06	.55	1.18	.20	
20	22 26	100 140	57	41	81	32	14	40	5	
36	33 36	1.30 1.42	2.24	1.61	3.19	1.26	.55	1.57	.20	
20	26 20	1 40 1 54	59	43	83,5	34	14	40	5	
39	36 39	1.42 1.54	2.32	1.69	3.29	1.34	.55	1.57	.20	
43	39 43	1.54 1.69	68	48	94,5	38	18	40	5	
43	39 43	1.04 1.69	2.68	1.89	3.72	1.50	.71	1.57	.20	
46	43 46	1.69 1.81	70	50	98	41	18	40	5	
40	43 40	1.09 1.81	2.76	1.97	3.86	1.61	.71	1.57	.20	
40	46 49	1.01 1.00	73	53	105,5	44	18	40	8	
49	40 49	1.81 1.93	2.87	2.09	4.15	1.73	.71	1.57	.31	
F0 *	40 50	1 00 0.05	76	56	110	47	18	40	8	
52 *	49 52	1.93 2.05	2.99	2.20	4.33	1.85	.71	1.57	.31	
50	50 50	0.00 0.00	78	58	115	52	18	40	8	
58	53 58	2.09 2.28	3.07	2.28	4.53	2.05	.71	1.57	.31	
04	50 01	0.00 0.10	80	60	118,5	57	18	40	8	
61	58 61	2.28 2.40	3.15	2.36	4.67	2.24	.71	1.57	.31	


* Similar to DIN 1592.



# Heavy Saddle with Tension Clearance (DIN 1593)

**Two-Bolt Design** 







### STAUFF **Diameter Range** Dimensions (mm/in) Group Ø D1 L2 D2 (in) L1 Н В S (mm) 44 28 5 6,6 16 2 7 5,5 ... 7 .22 ... .28 1.73 1.10 .20 .26 .08 .63 6,6 20 48 32 6 2 9 7...9 .28 ... .35 1.89 1.26 .24 .26 .79 .08 52 36 9 6,6 20 2 13 9,5 ... 13 .39 ... .51 2.05 1.42 .35 .79 .08 .26 12 56 40 6,6 20 2 15,5 13 ... 15,5 .51 ... .61 2.20 1.57 .47 .26 .79 .08 60 15 6.6 20 44 2 19 15,5 ... 19 .61 ... .75 2.36 1.73 .59 .26 .79 .08 19 11 25 82 56 3 20 ... 23 23 .79 ... .91 3.23 2.20 .43 .98 .12 .75 84 58 22 11 25 3 26 23 ... 26 .91 ... 1.02 3.31 2.28 .87 .43 .98 .12 90 25 24 11 64 3 28,5 26 ... 28,5 1.02 ... 1.12 3.54 2.52 .94 .43 .98 .12 27 25 90 64 11 3 31 28,5 ... 31 1.12 ... 1.22 .12 3.54 2.52 1.06 .43 .98 106 80 32 11 30 5 33 ... 36 1.30 ... 1.42 36 4.17 1.26 .43 .20 3.15 1.18 110 84 34 11 30 5 39 36 ... 39 1.42 ... 1.54 4 33 3.31 1.34 .43 1.18 .20 120 88 38 14 30 5 39 ... 43 1.54 ... 1.69 43 4.72 3.46 1.50 .55 1.18 .20 122 90 41 14 30 5 43 ... 46 1.69 ... 1.81 46 4.80 3.54 1.61 .55 1.18 .20 122 90 44 14 30 5 49 46 ... 49 1.81 ... 1.93 4.80 3.54 1.73 .55 1.18 .20 142 14 110 52 40 5 2.09 ... 2.28 58 53 ... 58 5.59 .55 4.33 2.05 1.57 .20 14 142 110 57 40 5 2.28 ... 2.40 61 58 ... 61 5.59 4.33 2.24 .55 1.57 .20 152 120 66 14 40 5 71 67 ... 71 2.64 ... 2.80 5.98 .55 4.72 2.60 1.57 .20 176 18 136 72 40 5 2.87 ... 3.03 77 73 ... 77 6.93 5 35 2.83 .71 .20 1.57 184 144 76 18 40 5 3.03 ... 3.19 77 ... 81 81 7.24 5.67 2.99 .71 1.57 .20 198 158 18 85 40 8 91 88 ... 91 3.39 ... 3.58 7.80 6.22 3.35 .71 1.57 .31 214 174 98 18 40 8 3.90 ... 4.06 103 99 ... 103 8.43 3.86 6 85 71 1 57 .31 220 180 104 18 40 8 109 105 ... 109 4.13 ... 4.29 8.66 4.09 .71 .31 7.09 1.57 226 186 109 18 40 8 115 110 ... 115 4.33 ... 4.53 8.90 7.32 4.29 .71 1.57 .31

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

rdering Codes										
eavy Saddle *DIN1593-*7-*W66										
Heavy Saddle to	DIN 1593	DIN1593								
STAUFF Group (	ð D1)	7								
Material code	Carbon Steel, uncoated	W1								
	Carbon Steel, zinc-plated and thick-film passivated	W66								
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 316	Ti) W5								

# **Applications**

0

He

*

*

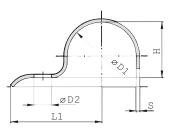
*

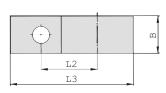
 Installation of pipes, tubes, poles and other round components directly on the substrate (floor, wall or ceiling)



# 

# Light Saddle with Tension Clearance (DIN 1596)


Single-Bolt Design



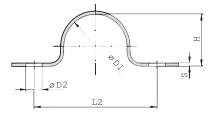

Ordering Codes									
Light Saddle	*DIN159	6 <b>-*7-*W66</b>							
* Light Saddle to DIN 1596 DIN15									
* STAUFF Group (	Ø D1)	7							
* Material code	Carbon Steel, uncoated Carbon Steel, zinc-plated and thick-film passivated	W1 W66							
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 )	/ 316 Ti) <b>W5</b>							

# **Applications**

 Installation of pipes, tubes, poles and other round components directly on the substrate (floor, wall or ceiling)






STAUFF Group	Diameter R	ange	Dimensions ( ^{mm} / _{in} )							
Ø D1	(mm)	(in)	L1	L2	L3	Н	D2	В	S	
7	5.5 7	.2228	26	14	31,5	5	6,6	16	2	
<u> </u>	0,0 1	.2220	1.02	.55	1.24	.20	.26	.63	.08	
9	79	.2835	28	16	34,5	6	6,6	16	2	
5	1	.2000	1.10	.63	1.36	.24	.26	.63	.08	
13	9.5 13	.3951	30	18	38,5	9	6,6	20	2	
10	3,0 10	.0001	1.18	.71	1.52	.35	.26	.79	.08	
15,5	13 15,5	.5161	32	20	41,75	12	6,6	20	2	
15,5	1010,0	.0101	1.26	.79	1.64	.47	.26	.79	.08	
19	15.5 19	19 .6175	34	22	45,5	15	6,6	20	2	
19	15,5 19 .0175	.0170	1.34	.87	1.79	.59	.26	.79	.08	
23	20 23	.7991	43	28	57,5	19	9	25	3	
23	20 23	.7991	1.69	1.10	2.26	.75	.35	.98	.12	
00	00 00	01 1 00	44	29	60	22	9	25	3	
26	23 26	.91 1.02	1.73	1.14	2.36	.87	.35	.98	.12	
00 F	00 00 5	1.02 1.12	47	32	64,25	24	9	25	3	
28,5	26 28,5		1.85	1.26	2.53	.94	.35	.98	.12	
04	00 5 01	1.12 1.22	47	32	65,5	27	9	25	3	
31	28,5 31		1.85	1.26	2.58	1.06	.35	.98	.12	
33 *	01 00	1 00 1 00	56	36	75,5	29	9	25	3	
33 "	31 33	1.221.30	2.20	1.42	2.97	1.14	.35	.98	.12	
	00 00	1.30	57	40	78	32	11	30	3	
36	33 36	1.42	2.24	1.57	3.07	1.26	.43	1.18	.12	
	00 00	1.42	59	42	81,5	34	11	30	3	
39	36 39	1.54	2.32	1.65	3.21	1.34	.43	1.18	.12	
40	00 40	1.54	61	44	85,5	38	11	30	3	
43	39 43	1.69	2.40	1.73	3.37	1.50	.43	1.18	.12	
	10 10	1.69	62	45	88	41	11	30	3	
46	43 46	1.81	2.44	1.77	3.46	1.61	.43	1.18	.12	
40	40 40	1.81	67	48	95,5	44	14	40	4	
49	46 49	1.93	2.64	1.89	3.76	1.73	.55	1.57	.16	
=0 t	40 50	1.93	72	53	102	47	14	40	4	
52 *	49 52	2.05	2.83	2.09	4.02	1.85	.55	1.57	.16	
		2.09	76	55	107	52	14	40	4	
58	53 58	2.28	2.99	2.17	4.21	2.05	.55	1.57	.16	
		2.28	77	58	111,5	56	14	40	4	
61	58 61	2.40	3.03	2.28	4.39	2.20	.55	1.57	.16	


* Similar to DIN 1596.



# Light Saddle with Tension Clearance (DIN 1597)

**Two-Bolt Design** 







STAUFF Group	Diameter Range		Dimensions (""/")						
Ø D1	(mm)	(in)	L1	L2	Н	D2	В	S	
7	5,5 7	.2228	44	28	5	5,5	16	1,5	
		.2220	1.73	1.10	.20	.22	.63	.06	
9	7 9	.2835	48	32	6	5,5	16	1,5	
			1.89	1.26	.24	.22	.63	.06	
13 9,	9,5 13	.3951	52	36	9	5,5	16	1,5	
15	9,0 10	.3901	2.05	1.42	.35	.22	.63	.06	
15,5	13 15,5	.5161	56	40	12	5,5	16	1.5	
15,5	15 10,0	.0101	2.20	1.57	.47	.22	.63	.06	
19	15.5 19	.6175	60	44	15	5,5	16	1.5	
19	10,0 19	.0170	2.36	1.73	.59	.22	.63	.06	
23	20 23	.7991	76	56	19	6,6	20	2	
23	20 23		2.99	2.20	.75	.26	.79	.08	
26	23 26	.91 1.02	78	58	22	6,6	20	2	A
26	23 20		3.07	2.28	.87	.26	.79	.08	
00.5	26 28,5	1.02 1.12	84	64	24	6,6	20	2	
28,5			3.31	2.52	.94	.26	.79	.08	
01	00 E 01	1.12 1.22	84	64	27	6,6	20	2	
31	28,5 31		3.31	2.52	1.06	.26	.79	.08	
33 *	31 33	100 100	92	72	29	6,6	20	2	
33	3133	1.221.30	3.62	2.83	1.14	.26	.79	.08	
36	33 36	1.30 1.42	104	80	32	9	25	3	
30	33 30		4.09	3.15	1.26	.35	.98	.12	
39	00 00	1.42	108	84	34	9	25	3	
29	36 39	1.54	4.25	3.31	1.34	.35	.98	.12	
43	39 43	9 43 1.54 1.69	112	88	38	9	25	3	
			4.41	3.46	1.50	.35	.98	.12	
46	43 46	46 1.69 1.81	114	90	41	9	25	3	
40			4.49	3.54	1.61	.35	.98	.12	
49	46 49	1.81 1.93	118	90	44	11	30	3	
			4.65	3.54	1.73	.43	1.18	.12	
F0 *	49 52	1.93 2.05	134	106	47	11	30	3	
52 *			5.28	4.17	1.85	.43	1.18	.12	
	53 58	3 2.09 2.28	138	110	52	11	30	3	
58			5.43	4.33	2.05	.43	1.18	.12	
	58 61	2.28 2.40	138	110	56	11	30	3	
61			5.43	4.33	2.20	.43	1.18	.12	

* Similar to DIN 1597.

Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.

<b>•</b>		<b>•</b> •	
	oring	1 1 Od	00
Ulu	emu	j Cod	65
		,	

Light Saddle	*DIN1597-*	7-*W66
* Light Saddle to I	DIN 1597	DIN 1597
* STAUFF Group (	ð D1)	7
* Material code	Carbon Steel, uncoated Carbon Steel, zinc-plated and thick-film passivated	W1 W66
	Stainless Steel V4A 1.4401 / 1.4571 (AISI 316 / 3	16 Ti) <b>W5</b>

# **Applications**

 Installation of pipes, tubes, poles and other round components directly on the substrate (floor, wall or ceiling)

141





N	5
-	

**Construction Series** 

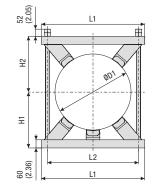
4		5	
	4		
	1		

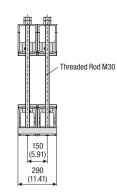
144 KS / DKS Construction Series (for Anchor Bolt Fastening) KSV / DKSV 145



### Construction Series Types KS (Single Version) / DKS (Double Version)

# es KS (Single Version) / DKS (Double





Ordering Codes								
Construction	Series *KS-*220-*PA-*	<b>W8</b>						
* Version	Single version Double version	KS DKS						
* Exact outside di	ameter ØD1 (mm)	220						
* Material of Plas	tic Pads (see below)	PA						
* Material Code	Steel, prime coated (grey, RAL 7035)	W8						
Please note: All ite	ms are supplied non-assembled.							

### **Standard Materials for Plastic Pads**

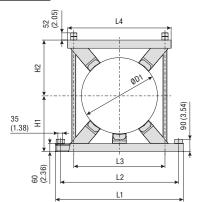


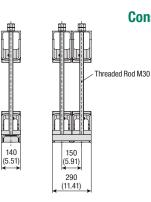
See pages 154 / 155 for material properties and technical information.





140 (5.51) R


STAUFF


Group	Outside Diamet Diameter Range	er ØD1 Pipe / Tub e	oe Standard [	Diameters	Dimens	ions ( ^{mm} /in)			No. of Plastic
STAUFF	(mm)	(in)	(mm)	(in)	L1	L2	H1	H2	Pads
			220	8.66					
			247	9.72	420	330	220	220	
1	220 275	8.66 10.85	267	10.51	16.54	12.99	8.66	8.66	4
			273	10.75					
			280	11.02					
			300	11.81	460	460 370		240	
2	276 325	325 10.87 12.80	318	12.52	18.11	14.57	240 9.45	9.45	- 4
			323,9	12.75					
			355,6	14.00	510	420	260	260	
3	326 370	12.83 14.57			20.08	16.53	10.23	10.23	- 4
			368	14.49	20100	10.00	10120	10120	
								_	
			390	15.35	570	480	290	290	
4	371 425	14.61 16.73			22.44	18.89	11.42	11.42	- 4
			406,4	16.00					
_			457,2	18.00	620	530	305	305	
5	426 485	16.77 19.09			24.41	20.87	12.01	12.01	- 4
			470	18.50					
			490	19.29					
			508	20.00	680	590	370	370	
6	486 550	19.13 21.65	521	20.51	26.77	23.23	14.57	14.57	- 4
			546	21.50					
			550.0	00.00					
7	FF1 000	01.00 04.00	558,8	22.00	760	670	410	410	-
7	551 630	21.69 24.80	000.0	04.00	29.92	26.38	16.14	16.14	5
			609,6	24.00					
8	631 715	24.84 28.15	711	28.00	845	755	452	452	5
0	031713	24.04 20.13	111	20.00	33.27	29.72	17.80	17.80	5
9	716 800	28.19 31.50	762	30.00	940	850	495	495	5
5	710000	20.13 31.30	102	50.00	37.00	33.46	19.49	19.49	5
	/								
10			813	32.00	990	900	500	500	5
10			010	02.00	38.97	35.43	19.69	19.69	0
	/					_			
11			1000	39.37	1200	1100	591,5	593	5
				00.07	47.24	43.30	23.29	23.34	Ŭ
	¥	¥							
12			1016	40.00	1200	1100	602	602	5
14					47.24	43.30	23.70	23.70	-

Alternative outside diameters, materials and surface finishings are available upon request. Contact STAUFF for further information.

Dimensional drawings: All dimensions in mm (in).

Group Outside Diameter ØD1 Pipe / Tube





Dimensions (mm/in)

No. of

### Construction Series for Anchor Bolt Fastening Types KSV (Single) / DKSV (Double)

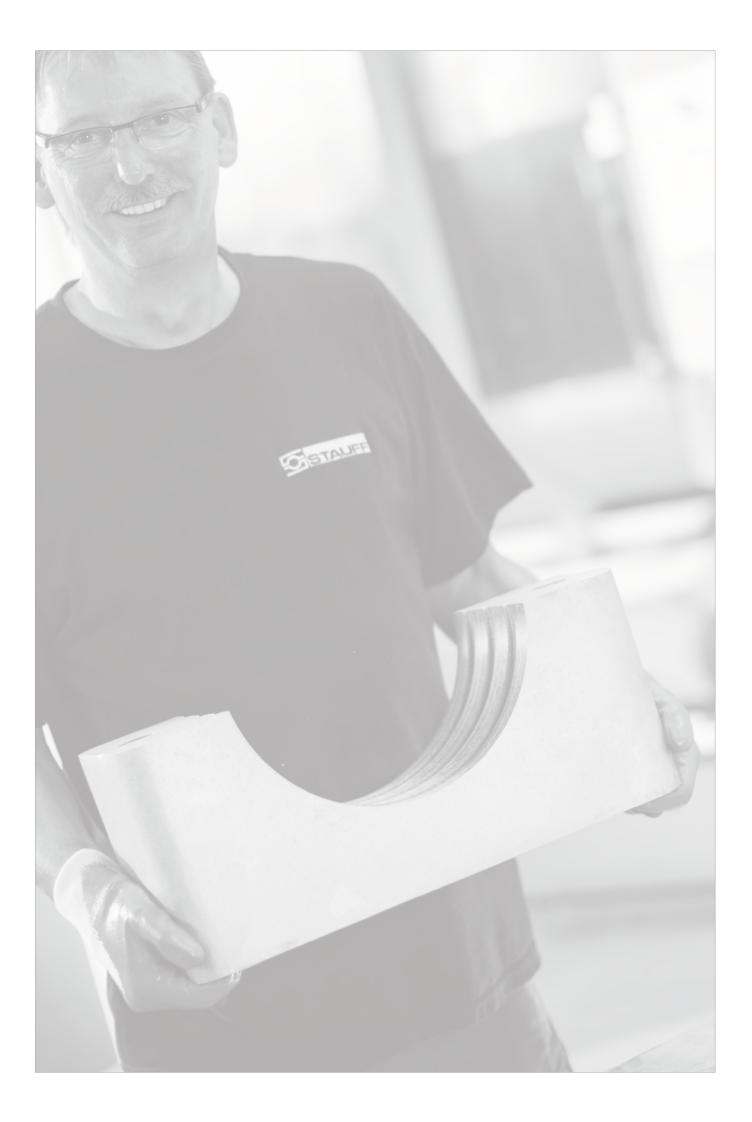


Ordering Codes									
Construction Series *KSV-*220-*PA-*W8									
* Version	Single version Double version	KSV DKSV							
* Exact outside di	ameter ØD1 (mm)	220							
* Material of Plas	tic Pads (see below)	PA							
* Material Code	Steel, prime coated (grey, RAL 7035)	W8							
Please note: All ite	ms are supplied non-assembled.								

### **Standard Materials for Plastic Pads**



See pages 154 / 155 for material properties and technical information.


aroup	Diameter Range							Plastic			
STAUFF	(mm)	, (in)	Standard Di (mm)	(in)	L1	L2	L3	L4	H1	H2	Pads
5171011	()	(iii)	220	8.66			20				1 440
			247	9.72	580	490	330	420	220	220	
1	220 275	8.66 10.85	267				12.99			8.66	4
				10.51	22.03	19.29	12.99	10.04	0.00	0.00	
			273	10.75							
			280	11.02	_						
2	276 325	10.87 12.80	300	11.81	620	530	370	460	240	240	4
-	210 020	10.07 12.00	318	12.52	24.41	20.87	14.57	18.11	9.45	9.45	7
			323,9	12.75							
	000 070	10.00 14.57	355,6	14.00	670	580	420	510	260	260	4
}	326 370	12.83 14.57	368	14.49	26.38	22.83	16.53	20.08	10.23	10.23	4
			390	15.35	75.0	C 40	400	570	000	000	
	371 425	14.61 16.73			750	640	480	570	290	290	4
			406,4	16.00	29.53	25.20	18.89	22.44	11.42	11.42	
			457,2	18.00	800	730	530	620	305	305	
5	426 485	16.77 19.09									4
			470	18.50	31.50	20.74	20.87	24.41	12.01	12.01	
			490	19.29							
	400 550	10.10 01.05	508	20.00	860	790	590	680	370	370	
	486 550	19.13 21.65	521	20.51	33.86	31.10	23.23	26.77	14.57	14.57	4
			546	21.50							
			558,8	22.00	940	870	670	760	410	410	
	551 630	21.69 24.80					26.38				5
			609,6	24.00	07.00	04.20	20.00	20.02	10.14	10.14	
					1025	955	755	845	452	452	
3	631 715	24.84 28.15	711	28.00			29.72				5
					40.01	57.00	23.12	00.27	11.00	11.00	
					1120	1050	850	940	495	495	
9	716 800	28.19 31.50	762	30.00			33.46				5
							50.70	500	10.10		
					1170	1100	900	990	500	500	_
0			813	32.00			35.43				5
	/				.0.00	.0.00	50.10	50.01			
					1400	1300	1100	1200	591.5	593	
1			1000	39.37			43.30				5
					CONTE	50	.0.00		_0.20	_0.01	
					1400	1300	1100	1200	602	602	
2			1016	40.00			43.30				5
					00.12	01.10	10.00	11.24	20.10	20.70	

Alternative outside diameters, materials and surface finishings are available upon request. Contact STAUFF for further information.

Dimensional drawings: All dimensions in mm (in).

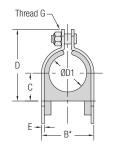


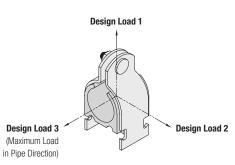
Catalogue 1 - Edition 08/2022





Ó	Cushion Clamp Series	148
	3107 3FC	
	Channel Rail	149
	SCS	140
	Compact Twin Series	
	DS	150
	Agriculture Twin Series	
	AG	150
	Dine (Tube Durbing	
51	Pipe / Tube Bushing	151
	RF	




Clamp Assembly - Types STC / SPC

(for Use with Channel Rail SCS)







Outside Diameter     Nominal     Ordering Codes     Standard     Dimensions       Pipe / Tube / Hose     Bore     (1 Clamp Assembly)     Packaging Units     (""/m)       Ø D1     Pipe										Design Loads ( ^{kN} / _{lbf} )				
(mm)	(in)	(in)	(** = Material Code)	pcs.	В*	С	D	Е	Thread G	1	2	3		
		()	,		15,7	5,6	28,2	2		1,78	0.22	0,22		
,4	1/4		STC-025- <b>**</b> -K	24 / box	.62	.22	1.11	.08	1/4-20 UNC	400	50	50		
	3/8		STC-037- <b>**</b> -K	24 / box	19,1	7,1	31,5	2	1/4-20 UNC	1,78	0,22	0,22		
	5/0		310-037- <b>**</b> -K	247 000	.75	.28	1.24	.08	1/4-20 0110	400	50	50		
2,7	1/2		STC-050-**-K	24 / box	22,1	8,6	34,5	2	1/4-20 UNC	1,78	0,22	0,22		
_,.			010 000 44 1	217 500	.87	.34	1.36	.08	171 20 0110	400	50	50		
3,5		1/4	SPC-025- <b>**</b> -K	24 / box	23,1	9,1	35,8	2	1/4-20 UNC	1,78	0,22	0,22		
					.91	.36	1.41	.08		400	50 0,22	50 0,22		
6	5/8		STC-062-**-K	24 / box	25,4	.41	38,1	2	1/4-20 UNC	1,78 400	50	50		
					27,2	11,4	40,4	2		2,67	0,33	0,33		
7,2		3/8	SPC-037-**-K	24 / box	1.07	.45	1.59	.08	1/4-20 UNC	600	75	75		
					33,8	13,5	45,2	2		2,67	0,33	0,33		
9	3/4		STC-075- <b>**</b> -K	24 / box	1.33	.53	1.78	.08	1/4-20 UNC	600	75	75		
1.0		4.10	000 050 4 5 14	04.45	36,8	15,0	48,5	2	4/4 00 1010	2,67	0,33	0,33		
1,3		1/2	SPC-050- <b>**</b> -K	24 / box	1.45	.59	1.91	.08	1/4-20 UNC	600	75	75		
2.2	7/8		STC-097- ታ-ታ- ሥ	24 / box	36,8	14,7	48,5	2	1/4-20 UNC	2,67	0,33	0,33		
2,2	//0		STC-087- <b>**</b> -K	24 / UUX	1.45	.58	1.91	.08	1/4-20 UNG	600	75	75		
5,4	1		STC-100-**-K	12 / box	42,2	16,8	51,6	2,8	1/4-20 UNC	2,67	0,33	0,33		
5,4	1		J10-100- <b>•••</b> •-N	12 / 000	1.66	.66	2.03	.11	1/4-20 0110	600	75	75		
6,9		3/4	SPC-075- <b>**</b> -K	12 / box	45,5	18,3	54,9	2,8	1/4-20 UNC	2,67	0,33	0,33		
-,-					1.79	.72	2.16	.11		600	75	75		
2	1-1/4		STC-125- <b>**</b> -K	12 / box	48,8	19,8	58,4	2,8	1/4-20 UNC	2,67	0,33	0,33		
					1.92	.78 23,1	2.30	.11		600	75 0,33	75 0,33		
3,7		1	SPC-100-**-K	12 / box	56,4 2.22	.91	69,9 2.75	3	5/16-18 UNC	2,67 600	75	75		
					56,4	23,1	69,9	3		2,67	0,33	0,33		
8	1-1/2		STC-150-**-K	12 / box	2.22	.91	2.75	.12	5/16-18 UNC	600	75	75		
					62,7	26,2	77,0	3		3,56	0,56	0,56		
2		1-1/4	SPC-125- <b>**</b> -K	12 / box	2.47	1.03	3.03	.12	5/16-18 UNC	800	125	125		
		1.10	000 450 1 1 1	10.0	62,7	29,5	83,3	3	5/10 10/100	3,56	0,56	0,56		
8,3		1-1/2	SPC-150- <b>**</b> -K	12 / box	2.47	1.16	3.28	.12	5/16-18 UNC	800	125	125		
0.0	0		CTC 200 drate 1/	12 / box	69,1	29,5	83,3	3	5/16-18 UNC	3,56	0,56	0,56		
0,8	2		STC-200- <b>**</b> -K	127 DUX	2.72	1.16	3.28	.12	5/10-16 UNC	800	125	125		
0,3		2	SPC-200- <b>**</b> -K	1 / bag	69,1	35,8	96,0	3	5/16-18 UNC	3,56	0,56	0,56		
0,0		2	010 200 44 1	17 bug	3.22	1.41	3.78	.12	0/10/10/0100	800	125	125		
3,5	2-1/2		STC-250-**-K	1 / bag	88,1	38,9	102,4	3	5/16-18 UNC	3,56	0,56	0,56		
- , -					3.47	1.53	4.03	.12		800	125	125		
6,7	2-5/8		STC-262- <b>**</b> -K	1 / bag	88,1	38,9	4.03	3	5/16-18 UNC	3,56	0,56	0,56		
					3.47 94,5	1.53 42,2	4.03	3		800 3,56	125 0,56	125 0,56		
3		2-1/2	SPC-250- <b>**</b> -K	1 / bag	3.72	1.66	4.27	.12	5/16-18 UNC	800	125	125		
					100,8	45,2	114,8	3		4,45	0,89	0,67		
6,2	3		STC-300-**-K	1 / bag	3.97	1.78	4.52	.12	5/16-18 UNC	1 000	200	150		
0.0		0		4.0	110,7	50,0	124,7	3	0/0 10/000	4,45	0,89	0,67		
8,9		3	SPC-300- <b>**</b> -K	1 / bag	4.36	1.97	4.91	.12	3/8–16 UNC	1 000	200	150		
0.2		2 1/0		1 / hag	126,2	57,9	140,5	3	2/0 10 UNO	4,45	0,89	0,67		
02		3-1/2	SPC-350- <b>**</b> -K	1 / bag	4.97	2.28	5.53	.12	3/8–16 UNC	1 000	200	150		
14		4	SPC-400- <b>**</b> -K	1 / bag	138,9	64,3	153,2	3	3/8-16 UNC	4,45	0,89	0,67		
.4		7	31 0-400- <b>ቶቶ-</b> ሺ	· / bay	5.47	2.53	6.03	.12	5/0-10 000	1 000	200	150		
40		5	SPC-500- <b>**</b> -K	1 / bag	164,3	77,0	178,6	3,6	3/8-16 UNC	4,45	0,89	0,67		
		Ŭ		. ,	6.47	3.03	7.03	.14	0.0 10 010	1 000	200	150		
68		6	SPC-600- <b>**</b> -K	1 / bag	189,7	89,7	204,0	3,6	3/8-16 UNC	4,45	0,89	0,67		
		1		5	7.47	3.53	8.03	.14		1 000	200	150		

* Minimum required for installation.

One clamp assembly is consisting of two carbon steel clamp halves (one with threaded stud), one thermoplastic cushion insert and one lock nut with Nylon insert. Channel rail not included. All threaded parts are only available with unified coarse (UNC) thread. Alternative materials and surface finishings are available upon request. Contact STAUFF for further information.



### Clamp Assembly = Types STC / SPC

(for Use with Channel Rail SCS)



### **Standard Materials**

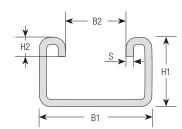


Cushion Insert Thermoplastic Elastomer (80 Shore-A) Colour: Black

The cushion material is compatible with most oils, chemicals and cleaning solvents and suitable for applications within a temperature range of -50 °C ... +125 °C (-58 °F ... +257 °F).

Alternative materials are available upon request. Please contact STAUFF for further information.

#### **Product Features**


- Clamp assemblies designed to mount directly to 41,3 mm / 1-5/8 in wide strut channels, such as the STAUFF Channel Rail, type SCS
- Suitable for most Fluid Power applications ranging from mobile equipment to industrial machinery
- Reduced horizontal mounting space
- Easy installation and retro fit capabilityReduces shock and vibration while preventing
- galvanic corrosion



### **Ordering Codes**

Clamp Assemi	*STC-*125-*	*W4-*K
* Type of clamp	STC (Tube diameters) SPC (Pipe diameters)	STC SPC
* Pipe / Tube O.D.	(according to dimension table)	125
* Material code	Carbon Steel, zinc-plated, blue-chromated	W32
	Stainless Steel V2A 1.4301 (AISI 304)	W4
	Stainless Steel V4A 1.4401 (AISI 316)	W5
Assembling	Components packed in kits	К

### Channel Rail • Type SCS

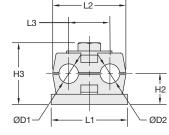


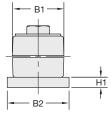
Dimensions (mm/in)				
B1	B2	H1	H2	S
41,3	22,2	25,4	7	2,7
1.63 (1-5/8)	.88 (7/8)	1.00	.28	.11

Alternative rail profiles, materials and surface finishings are available upon request. Contact STAUFF for further information.

### Ordering Codes

Strut Channel	*SCS-*048-*	*1-*PL
* Strut Channel		SCS
* Length of Rail	1,22 m / 4.00 ft / 48 in 3,05 m / 10.00 ft / 120 in	048 120
* Height of Rail	25,4 mm / 1.00 in	1
* Material code	Carbon Steel, uncoated Carbon Steel, green painted	PL GR


Ν






### **Compact Twin Series: Clamp Body Type DS**







Group	Outside Diameter Pipe / Tube Ø D1 / Ø D2		Nomina Pipe	al Bore Copper Tube ASTM B88	Ordering Codes (2 Clamp Halves)	Dime	ension	IS ( ^{mm} /	'in)				
STAUFF	(mm)	(in)	(in)	(in)		L1	L2	L3	H1	H2	H3	B1	B2
	6				106/06-PP-DS								
	6,4	1/4			106.4/06.4-PP-DS	07	05.5	00	-	15	00	05	00
DS 1	8	5/16			108/08-PP-DS	37	35,5		5	15	30	25	30
	9,5	3/8		1/4	109.5/09.5-PP-DS	1.46	1.40	.79	.20	.59	1.18	.98	1.18
	10		1/8		110/110-PP-DS	1							

Additional outside diameters are available upon request. Please contact STAUFF for further information.

**Compact Twin Series: Metal Hardware** 

One clamp body is consisting of two clamp halves.

* Exact outside diameters Ø D1 / Ø D2 (mm)

* Clamp Body Material (Polypropylene)



**Ordering Codes** 

**Clamp Body** 

* STAUFF Group DS 1

* Compact Twin Series

Weld Plate, Type SP-DS

*1-*06/06-*PP-*DS

1

06/06

PP DS

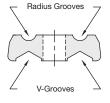


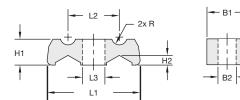


**Cover Plate, Type US-DS** US-DS-1-W3

Carbon Steel, zinc/nickel-plated




**Hexagon Bolt, Type AS** 


AS-1/4-20UNCx1-W3 Thread size: 1/4-20 UNC Carbon Steel, zinc/nickel-plated

All threaded parts are only available with unified coarse (UNC) thread. Rail mount and stacking assemblies as well as alternative materials and surface finishings are available upon request.

### **Agriculture Twin Series: Clamp Body** Type AG









Ν

Group	Min/Max Outside Diameters Pipe / Tube Radius Grooves V-Grooves			Ordering Codes (1 Clamp Body)	Dimens	sions ( ^{mm} /in)							
STAUFF	(mm)	(in)	(mm)	(in)		L1	L2	L3	H1	H2	B1	B2	R
2	3 10	.1239	4 15	.2659	215.8/09.6-PP-AG-BK-HV	57,5 2.26	31,7 1.25	14,0 .55	16,0 .63	7,1 .24	25,0 .98	11,0 .43	4,8 .19
3	4 25	.1698	7 20	.2879	324.8/19.5-PP-AG-BK-HV	62,0 2.48	34,5 1.36	14,0 .55	19,0 .75	7,1 .28	32,0 1.26	11,0 .43	12,4 .49

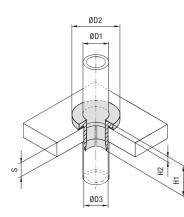
### **Standard Material**



### **Product Features**

- Flip the clamp body to choose between the radius grooved or the v-grooved design (suitable for a range of diameters) Additional outside diameters are available upon request. Please contact STAUFF for further information.

See pages 154 / 155 for properties and technical information.


 Use M10 or 3/8–16 UNC bolts or screws (preferably with washers) to fasten clamp bodies directly to the machine

Catalogue 1 - Edition 08/2022

· Clamp bodies can be stacked for multi-level assembly



### R STAUFF



Outside Diameter ØD1		Nominal Bore	Dimensions			Wall Thickness	Mounting Bore
			(mm/in)			(mm/in)	(mm/in)
(mm)	(in)	(in)	ØD2	H1	H2	S	ØD3
6	1/4		18	22	4	4 12	10
0	1/4		.71	.87	.16	.1647	.39
8	5/16		20	22	4	4 12	12
0	5/10		.79	.87	.16	.1647	.47
10	3/8	1/8 Pipe	22	22	4	4 12	14
10	3/0	1/4 Copper Tube (ASTM B88)	.87	.87	.16	.1647	.55
12	1/2	3/8 Copper Tube (ASTM B88)	24	22	4	4 12	16
12	1/2	3/0 Cupper Tube (ASTIVI DOO)	.94	.87	.16	.1647	.63
14		1/4 Pipe	26	22	4	4 12	18
14		1/4 FIDE	1.02	.87	.16	.1647	.71
15			28	22	4	4 12	20
15		1.10	.87	.16	.1647	.79	
16	5/8	1/2 Copper Tube (ASTM B88)	28	22	4	4 12	20
10	0/6		1.10	.87	.16	.1647	.79
18			30	22	4	4 12	22
10			1.18	.87	.16	.1647	.87
20	3/4		32	22	4	4 12	24
20	3/4		1.26	.87	.16	.1647	.94
22	7/8	Q/A Conner Tube (ACTM DOO)	34	22	4	4 12	26
22	1/0	3/4 Copper Tube (ASTM B88)	1.34	.87	.16	.1647	1.02
25	1		38	22	4	4 12	30
20	1		1.50	.87	.16	.1647	1.18
20		1 Copper Tube (ASTM B88)	41	22	4	4 12	33
28		L Cohhei Linne (4211/1888)	1.61	.87	.16	.1647	1.30
30			43	22	4	4 12	34
30			1.69	.87	.16	.1647	1.39
35		1-1/4 Copper Tube (ASTM B88)	48	22	4	4 12	40
50		1-1/4 Copper Tube (ASTIN B88)	1.89	.87	.16	.1647	1.57
20	1-1/2		51	22	4	4 12	43
38	1-1/2		2.01	.87	.16	.1647	1.70
40		1-1/4 Pipe	55	22	4	4 12	47
42		1-1/2 Copper Tube (ASTM B88)	2.17	.87	.16	.1647	1.85

### Pipe / Tube Bushing - Type SRF



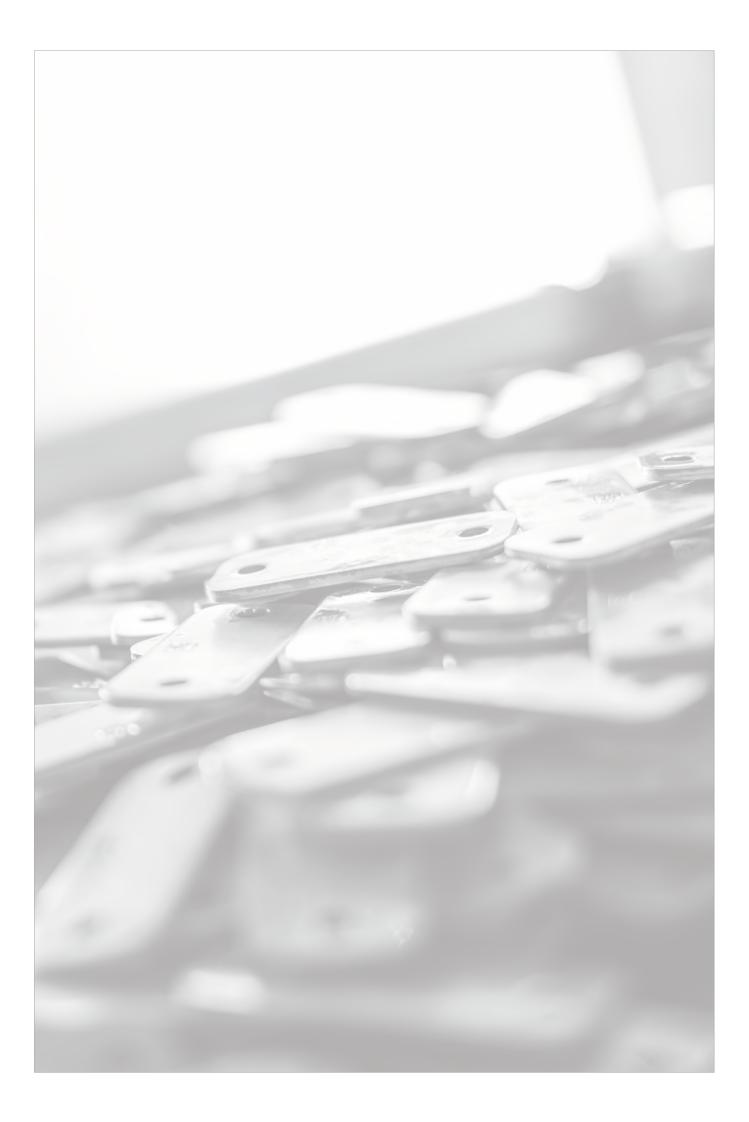
### **Ordering Codes**

Pipe / Tube Bushing	*SRF-*20-*PP
<ul> <li>Pipe / Tube Bushing</li> <li>Exact outside diameter Ø D1 (mm)</li> <li>Material code (see below)</li> </ul>	SRF 20 PP

### **Standard Materials**

3

Polypropylene Colour: Natural colour Material code: PP


Thermoplastic Elastomer (87 Shore-A) Colour: Black Material code: SA

See pages 154 / 155 for material properties and technical information.

### **Product Features**

• Designed to centre the pipe or tube in a through-hole (e.g. for return lines entering the hydraulic reservoir)

- Vibration and noise absorbing element
- Available for all commonly used Metric and imperial pipe and tube diameters from 6  $\ldots$  42 mm and 1/4 ... 1-1/2 in
- Easy plug-in installation



		~
$\sim$		ß
ミニ		
$\sim$	SIAOFF	

Standard Clamp Body Materials	154
Standard Elastomer Insert Materials	155
Special Clamp Body Materials	156
Standard Clamp Body Designs	158
Materials and Surface Finishings of Metal Parts	159
Property Classes / Grades of Bolts and Screws	159
Thread Conversion Chart	159
General Installation Instructions	160
Tightening Torques / Maximum Loads in Pipe Direction	161
Dimensions and Weights of Clamp Assemblies	162
Packaging Units (Selection)	163



153

#### R STAUF

### **Standard Clamp Body Materials**









Material Code	РР	РА	AL	SA
Basic Material	Copolymeric Polypropylene	Polyamide	Aluminium AlSi12	Thermoplastic Elastomer
Standard Colour	Green	Black	Natural	Black

### Machanical Proportio

Mechanical Properties				
lensile F-Module		> 1400 N/mm² (ISO 527)	> 65000 N/mm²	113 N/mm² at +23 °C / +73.4 °F (ASTM D412)
Notch Impact Strength	8 kJ/m ² at +23 °C / +73.4 °F (acc. to Charpy / ISO 179 / 1eU)	> 15 kJ/m ² at 23 °C / +73.4 °F (acc. to Charpy / ISO 179 / 1eU)		
Low Temperature Notch Impact Strength	3 kJ/m ² at -20 °C / -4.0 °F (acc. to Charpy / ISO 179 / 1eU)	> 3 kJ/m ² at -30 °C / -22.0 °F (acc. to Charpy / ISO 179 / 1eU)		
Tensile Strength at Yield (Tensile Strength)	26 MPa (ISO 527-2)	> 55 MPa (ISO 527)	> 240 MPa (ISO EN 10002)	15,9 MPa (ASTM D412)
Ball Indentation Hardness (Brinell Hardness)	45,4 MPa (ISO 2039-1)	> 65 MPa (ISO 2039-1)	> 70 HBS	
Shore Hardness				87 A (ISO 868) Alternative hardnesses are available upon request! Contact STAUFF for details.

hermal Properties						
Temperature Resistance (Min Max)	-30 °C +90 °C / -22 °F +194 °F	-40 °C +120 °C / -40 °F +248 °F (Brief exposure up to +140 °C / +284 °F)	up to +300 °C / up to +572 °F	-40 °C +125 °C / -40 °F +257 °F		

Chemical Properties				
Weak Acids	conditionally consistent	conditionally consistent	conditionally consistent	consistent
Solvents	conditionally consistent	conditionally consistent	conditionally consistent	conditionally consistent
Benzine	conditionally consistent	consistent	consistent	conditionally consistent
Mineral Oils	conditionally consistent	consistent	consistent	conditionally consistent
Other Oils	consistent	consistent	consistent	consistent
Alcohols	consistent	consistent	consistent	consistent
Seawater	consistent	consistent	consistent	consistent

### **Special Clamp Body Materials**

Please contact STAUFF for further details on fire-proof clamp body materials, tested and approved according to several international fire-protection standards (such as BS 6853, EN 45545-2, UL 94 and many more).

See pages 156 / 157 for material properties and technical information.

The information for the Polyamide material PA have been determined in a conditioned state according to ISO 1110. For Aluminium, the tensile strength (under reversed bending stress) and impact bending strength both rise constantly at decreasing temperatures whilst the value for breaking elongation decreases.

STAUFF preserves the right to supply products made from alternative, but comparable materials with matching technical characteristics.





### **Standard Clamp Insert Materials**



STAUFF Group 4 and 6 (Standard Series) STAUFF Group 4S to 6S (Heavy Series)



STAUFF Group 7S to 10S (Heavy Series)

SA	EPDM	Material Code
Thermoplastic Elastomer	Ethylene Propylene Diene Monomer	Basic Material
Black	Black	Standard Colour

		Mechanical Properties
16 N/mm² at +23 °C / +73.4 °F (ASTM D412)		Tensile E-Module
		Notch Impact Strength
		Low Temperature Notch Impact Strength
8,3 MPa (ASTM D412)	9,0 MPa (DIN 53504)	Tensile Strength at Yield (Tensile Strength)
		Ball Indentation Hardness (Brinell Hardness)
73 A (ISO 868)	70 A (DIN 53505)	Shore Hardness

		mermarriopernes
-40 °C +125 °C/ -40 °F +257 °F	-50 °C +120 °C / -58 °F +248 °F	Temperature Resistance (Min Max)

		Chemical Properties
consistent	consistent	Weak Acids
conditionally consistent	consistent	Solvents
conditionally consistent	conditionally consistent	Benzine
conditionally consistent	conditionally consistent	Mineral Oils
consistent	conditionally consistent	Other Oils
consistent	consistent	Alcohols
consistent	consistent	Seawater



### **Special Clamp Insert Materials**

Please contact STAUFF for further details on fire-proof clamp body materials, tested and approved according to several international fire-protection standards (such as BS 6853, EN 45545-2, UL 94 and many more).

See pages 156 / 157 for material properties and technical information.

STAUFF preserves the right to supply products made from alternative, but comparable materials with matching technical characteristics.

### **Special Clamp Body Materials (Selection)**

**Preventive Fire Protection** 



Material Code	PA-V0	PP-DA	PA-GF30-USR
Basic Material	Polyamide	Polypropylene	Polyamide
Standard Colour	Grey / Black	Weiss	Black

### Mechanical Properties

Mechanical Properties			
Tensile E-Module	1500 MPa (ISO 527-2)	1614 N/mm² (ISO 527) bei +23 °C / +73.4 °F: 50 mm/min	8274 MPa (ASTM D638)
Notch Impact Strength	35 kJ/m² at +23 °C / +73.4 °F (acc. to Charpy / ISO 179 / 1eU)	13 kJ/m² at +23 °C / +73.4 °F (acc. to IZOD / ISO 179 / 1eA)	15 kJ/m² (ASTM D256)
Low Temperature Notch Impact Strength		1,5 kJ/m² at -25 °C / -13.0 °F (acc. to IZOD / ISO 179 / 1eA)	
Tensile Strength at Yield (Tensile Strength)	45 MPa (ISO 527-2)	12,4 MPa (ISO 527) at +23 °C / +73.4 °F: 50 mm/min	131 MPa (ASTM D638)
Ball Indentation Hardness (Brinell Hardness)	100 N/mm² (ISO 2039-1)		
Shore Hardness			

Thermal Properties			
Temperature Resistance (Min Max)	-30 °C +120 °C / -22 °F +248 °F	-25 °C +90 °C / -13 °F +194 °F	-30 °C +120 °C / -22 °F +248 °F

Features			
Approvals / Properties	Tested and approved acc. to UL94 ¹ (material thickness: 3 mm)	Tested and approved acc. to UL94 ¹ (material thickness: 3 mm)	Tested and approved acc. to ASTM D638 (material thickness: 1,5 mm)
	Classification: V-0 (Vertical Burning Test)	Classification: V-0 (Vertical Burning Test)	Classification: V-0 (Vertical Burning Test)
	Tested and approved acc. to EN 45545-2 (material thickness: 3,5 mm)	Tested and approved acc. to Def Stan 07-247 • Assessment: category B	Tested and approved acc. to NFPA 130 (material thickness: 3 mm)
	<ul> <li>Requirements set R22 / R23 / R24 / R26</li> <li>Hazard level HL1 - HL3</li> </ul>	Approved by the UK Ministry of Defence (MoD)	<ul> <li>no burning dripping</li> </ul>
	Tested and approved acc. to DIN 5510, Part 2 (material thickness: 3 mm)	Low Smoke Zero Halogen (LSZH)	Halogen Free Flame Retardant (HFFR)
	<ul> <li>Combustibility classification: S4</li> <li>Smoke development classification: SR2</li> <li>Dripping classification: ST2</li> </ul>		
	Tested and approved acc. to NF F 16-101 (material thickness: 3 mm)		
	Classification: I3 / F2		
	Low Smoke Zero Halogen (LSZH)		

¹ Successful testing and approval according to UL94 (classification V-0) is equivalent to EN 45545-2 (requirements set R26; hazard level HL3). The information for PA-V0 has been determined in a conditioned state according to ISO 1110.

STAUFF preserves the right to supply products made from alternative, but comparable materials with matching technical characteristics.



**Technical Appendix** 

### **Special Clamp Body Materials (Selection)**

**Preventive Fire Protection** 







PP6853	PP-V0	SA-V0	Material Code
Polypropylene	Polypropylene	Thermoplastic Elastomer	Basic Material
White	Black	Natural	Standard Colour

			Mechanical Properties
1264 MPa (ICE 60811-1-1)		113 N/mm² at +23 °C / +73.4 °F (ASTM D412)	Tensile E-Module
17 kJ/m² at +23 °C / +73.4 °F (acc. to IZOD / ISO 179 / 1eA)	5 kJ/m² at +23 °C / +73.4 °F (acc. to ISO 180/A)		Notch Impact Strength
			Low Temperature Notch Impact Strength
25 MPa (ICE 60811-1-1)	24 MPa (ISO 527)	15,9 MPa (ASTM D412)	Tensile Strength at Yield (Tensile Strength)
			Ball Indentation Hardness (Brinell Hardness)
		86 A (ISO 868)	Shore Hardness

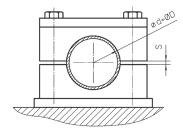
			Thermal Properties
-25 °C +90 °C / -13 °F +194 °F	-25 °C +90 °C / -13 °F +194 °F	-55 °C +90 °C / -67 °F +194 °F	Temperature Resistance (Min Max)

			Features
Tested and approved acc. to EN 45545-2 (material thickness: 3 mm) • Requirements set R22 / R23 / R24 / R26 • Hazard level HL1 - HL3 Tested and approved acc. to BS 6853 (Code of practice for fire precautions in the design /construction of passenger carrying trains) • Assessment: category 1a Compliant to the requirements of London Underground / Metronet (standard 2-01001-002: Fire Safety Performance of Materials) Tested and approved acc. to DIN 5510, Part 2 (material thickness: 25 mm) • Combustibility classification: S4 • Smoke development classification: SR2 • Dripoing classification: ST2	Tested and approved acc. to UL94 ¹ (material thickness: 3 mm) • Classification: V-0 (Vertical Burning Test)	Tested and approved acc. to UL94 ¹ (material thickness: 3 mm) • Classification: V-0 (Vertical Burning Test)	Features Approvals / Properties
<ul> <li>Dripping classification: 312</li> <li>Tested and approved acc. to Def Stan 07-247</li> <li>Assessment: category B</li> <li>Compliant to the requirements of JRMA (Japan Railway Rollingstock &amp; Machinery Association)</li> <li>Classification: extremely incombustible</li> <li>Low Smoke Zero Halogen (LSZH)</li> </ul>			

¹ Successful testing and approval according to UL94 (classification V-0) is equivalent to EN 45545-2 (requirements set R26; hazard level HL3).

STAUFF preserves the right to supply products made from alternative, but comparable materials with matching technical characteristics.

0


### **Standard Clamp Body Designs**



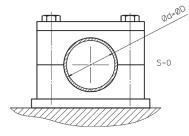
### **Profiled Design**

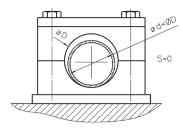
### **Profiled Inside Surface with Tension Clearance**

- Available in the Standard, Heavy, Twin and Heavy Twin Series
- · Recommended for the safe installation of rigid pipes or tubes
- · Available for all commonly used outside diameters and nominal sizes
- Vibration/noise reducing and impact absorbing effect towards the direction of the line provided by the grooves on the inside of the clamp bodies
- · Clearance S between the clamp halves provides tension of the tube or pipe
- To be used as fixed point clamp preventing the line from sliding (see page 161 for Maximum Loads in Pipe Direction)



R

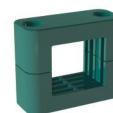

STALI




### Type H (Smooth)

### Smooth Inside Surface w/o Tension Clearance

- · Available in the Standard, Heavy and Twin Series
- Recommended for the safe installation of hoses or cables
- · Available for all commonly used outside diameters and nominal sizes
- Smooth inside surface and chamfered edges avoid damaging of the hose or cable
- Choose the diameter ØD of the clamp body slightly larger (in accordance to your specific requirements) than the outside diameter  $\operatorname{\texttt{Ød}}$  of the pipe, tube, hose or cable in order to use it as a longitudinal guide allowing the line to slide








### Type RI (with Elastomer Insert)

- Available in the Standard, Heavy and Heavy Twin Series
- · Recommended for the extra-gentle installation of pipes, tubes hoses or cables
- · Available for all commonly used outside diameters and nominal sizes
- · Elastomer insert made of Thermoplastic Elastomer with a hardness of 73 Shore-A provides most effective reduction of vibration and noise caused by vibration



### **Rectangular Design = Type VK**

- Available in the Standard Series (STAUFF Group 5)
- · Recommended for the safe installation of proximity switches according to DIN EN 60947-5-2 or similar, rectangular construction, with a square of 40 mm x 40 mm (1.57 in x 1.57 in) or 40 mm x 36 mm (1.57 in x 1.42 in)

Catalogue 1 - Edition 08/2022



### **Materials and Surface Finishings of Metal Parts**

### **Materials**

Unless otherwise stated, all metal parts (e.g. weld plates, cover plates, bolts, rail nuts etc.) are made of **Carbon Steel** (surface finishing according to material code).

Besides that, all metal parts are also available **ex stock** in two different stainless steel qualities:

#### Stainless Steel V2A

Stainless Steel V4A

- 1.4301 / 1.4305 (AISI 304 / 303)
- Material code: W4

# 

Rost

- 1.4401 / 1.4571 (AISI 316 / 316 Ti)
- Material code: W5

#### Aluminium

- Aluminium EN AW-6060
- Material code: W85

Alternative materials (e.g. Aluminium) are available upon request. Contact STAUFF for further information.

### **Surface Finishings**

Unless otherwise stated, all metal parts made of Carbon Steel are available with the following standard surface finishings:

#### Carbon Steel, uncoated

Material code: W1

#### Carbon Steel, phosphated

- Fe/Znph r 10 according to DIN EN 12476
  Material code: W2

### Carbon Steel, zinc/nickel-plated

- More than 1200 hours resistance against red rust / base metal corrosion in the salt spray test to DIN EN ISO 9227
- Free of hexavalent chromium Cr(VI)
  RoHS compliant according to 2002/95/EC
- (Restrictions of the Use of Hazardous Substances) ELV compliant according to 2000/53/EC
- (End of Life Vehicles Directive) Material code: W3
- Material code: W3

Alternative surface finishings are available upon request. Contact STAUFF for further information.



Original STAUFF Cover Plate with Zinc/Nickel-Coating: No signs of corrosion after <u>1200 hours</u> in the salt spray chamber!



Original STAUFF Cover Plates with alternative surface finishings widely-used by competitors in the market (from left to right):

- Galvanisation and blue-chromating after 96 hours
- Galvanisation and yellow-chromating after <u>192 hours</u>
- Zinc-coating, thick-film passivation and sealing after <u>192 hours</u>

In all three cases, signs of white and red rust / base metal corrosion are quite clearly visible! Please do not hesitate to contact STAUFF and ask for a detailed report.

**Property Classes / Grades of Bolts and Screws** 

### **Thread Conversion Chart**

### Metric ISO vs. Unified Coarse (UNC) Thread



Unless otherwise stated, all threaded parts available with Metric ISO thread or unified coarse (UNC) thread.

#### Standard Series (DIN 3015, Part 1)

Group		Thread		Bolt
STAUFF	DIN	Metric ISO	Unified Coarse	
1 to 8	0 to 8	M6	1/4-20 UNC	

### Heavy Series (DIN 3015, Part 2)

Group		Thread	
STAUFF	DIN	Metric ISO	<b>Unified Coarse</b>
3S to 5S	1 to 3	M10	3/8-16 UNC
6S	4	M12	7/16-14 UNC
7S	5	M16	5/8-11 UNC
8S	6	M20	3/4-10 UNC
9S	7	M24	7/8–9 UNC
10S	8	M30	1-1/8-7 UNC
11S to 12S	9 to 10	M30	1-1/4-7 UNC

#### Twin Series (DIN 3015, Part 3)

Group		Thread		
STAUFF	DIN	Metric ISO	<b>Unified Coarse</b>	
1D	1	M6	1/4-20 UNC	
2D to 5D	2 to 5	M8	5/16-18 UNC	

**Hexagon Head Bolt** 

Hexa Type

Sock Type

Slotte Type Socket Cap Screw

# Slotted Head Screw

t / Screw Type	Material Code	Property Class / Grade Metric ISO Threaded Bolts / Screws	Unified Coarse Threaded Bolts / Screws
	W1, W2, W3	8.8 (according to DIN EN ISO 898)	5 (according to SAE J429)
agon Head Bolt e AS	W4	A2-70 (according to DIN EN ISO 3506)	AISI 304 / B8 (according to ASTM A193)
	W5	A4-70 (according to DIN EN ISO 3506)	AISI 316 / B8M (according to ASTM A193)
	W1, W2, W3	8.8 (according to DIN EN ISO 898)	5 (according to SAE J429)
ket Cap Screw IS	W4	A2-70 (according to DIN EN ISO 3506)	AISI 304 / B8 (according to ASTM A193)
	W5	A4-70 (according to DIN EN ISO 3506)	AISI 316 / B8M (according to ASTM A193)
	W1, W2, W3	4.8 (according to DIN EN ISO 898)	2 (according to SAE J429)
ted Head Screw e Ll	W4	A2-70 (according to DIN EN ISO 3506)	AISI 304 / B8 (according to ASTM A193)
	W5	A4-70 (according to DIN EN ISO 3506)	AISI 316 / B8M (according to ASTM A193)

Unless otherwise stated, the above mentioned property classes / grades apply as standards for bolts and screws supplied by STAUFF. The information indicate the minimum requirements; higher property classes are available upon request. Contact STAUFF for details.

# STAUFF

### **Basic Installation Instructions**



### **Installation on Weld Plate**

Different types of weld plates are available for all STAUFF Clamps according to DIN 3015 as well as for most of the other series and many custom-designed special clamps.

- Place weld plates in their designated positions. Please make sure these positions are suitable for the expected loads.
- Mark the positions of the weld plates to ensure best alignment.
- Weld the weld plates into position. Elongated weld plates can also be mounted to their positions by using screws or bolts.
- Push bottom clamp half onto weld plate.
- Insert pipe, tube, hose, cable or any other type of line.
- Place second clamp half and cover plate (optional) on top and mount clamp assembly by using screws or bolts.

Unless otherwise stated, the bolt lengths indicated for clamps according to DIN 3015 refer to the installation on weld plages and mouting rails as well as multi-level (stacking) installation. For direct installation, different lengths may be required.



### Installation on Mounting Rail

STAUFF Mounting Rails are available in different heights. STAUFF Rail Nuts are available for all STAUFF Clamps according to DIN 3015 (Heavy Series up to STAUFF Group 6S only) as well as for many custom-designed special clamps.

- Place mounting rails in their designated positions. Please make sure these bases are suitable for the expected loads.
- Mark the positions of the mounting rails to ensure best alignment.
- Weld the mounting rails into position. Mounting rails can also be mounted to their positions by using side-mounting brackets with screws or bolts.
- Insert rail nuts into mounting rail and turn until stop to lock (Standard and Twin Series) or slide in rail nut (Heavy Series).
   Push bottom clamp half onto rail nuts.
- Insert pipe, tube, hose, cable or any other type of line.
- Place second clamp half and cover plate (optional) on top and mount clamp assembly by using screws or bolts.

The exact positions of the clamp assemblies can still be adjusted before being firmly bolted.



### **Multi-Level (Stacking) Installation**

Stacking bolts permit the multi-level assembly of clamps of identical group sizes. Safety locking plates inserted between the levels prevent the stacking bolts from turning. The Twin Series also allows stacking of different group sizes (STAUFF Groups 2D to 5D).

- Push bottom clamp half onto weld plate or rail nuts.
- Insert pipe, tube, hose, cable or any other type of line.
- Place second clamp half.
- Insert stacking bolts into the clamp assembly and tighten using the following tightening torques (or in a way that the clamp halves are in contact with the line over the entire internal contact surface):
- Standard Series
   1 ... 2 N·m / .75 ... 1.5 ft-lb (hand-tightened)

   Heavy Series
   5 N·m / 3.75 ft-lb
- Twin Series
   1 ... 2 N·m / .75 ... 1.5 ft·lb (hand-tightened)

   Place safety locking plate on top of clamp assembly.
- Proceed with next levels. Top level to be assembled with cover plate and hexagon head bolts using the tightening torques as indivated on page 161.

STAUFF multi-level clamp assemblies can be mounted both to weld plates or to mounting rails (with rail nuts).

### **Recommended Distance between Clamps**



Please note: The recommended distances between clamps stated below are standard values and valid for static loads only.

<b>Outside Diameter</b>	side Diameter Distance A			<b>Outside Diameter</b>	Distance A		
(mm)	(in)	(m)	(ft)	(mm)	(in)	(m)	(ft)
6,0 12,7	.2350	1,00	3,28	114,0 168,0	4.50 6.60	5,00	16,40
12,7 22,0	.5086	1,20	3,94	168,0 219,0	6.60 8.60	6,00	19,68
22,0 32,0	.86 1.25	1,50	4,92	219,0 324,0	8.60 12.70	6,70	21,98
32,0 38,0	1.25 1.50	2,00	6,56	324,0 356,0	12.70 14.00	7,00	22,96
38,0 57,0	1.5 2.25	2,70	8,86	356,0 406,0	14.00 16.00	7,50	24,60
57,0 75,0	2.25 2.95	3,00	9,84	406,0 419,0	16.00 16.50	8,20	26,90
75,0 76,1	2.95 3.00	3,50	11,48	419,0 508,0	16.50 20.00	8,50	27,88
76,1 88,9	3.00 3.50	3,70	12,14	508,0 521,0	20.00 20.50	9,00	29,52
88,9 102,0	3.50 4.00	4,00	13,12	521,0 558,0	20.50 22.00	10,00	32,80
102,0 114,0	4.00 4.50	4,50	14,76	558,0 800,0	22.00 31.50	12,50	41,00

### Installation next to Pipe Bends, Connectors / Couplings and Valves



Please note the following information on the installation of STAUFF Clamps next to pipe bends, connectors / couplings and valves:

#### Pipe Bends

Pipe bends should be supported by STAUFF Clamps as close to the bends as possible. Furthermore, it is recommended to design these clamps as fixed point clamps.

#### **Connections / Couplings**

The first clamp should be placed directly next to the connector / coupling. This protects the connector / coupling from vibrations.

#### Valves

If valves are incorporated in the pipelines, it is recommended that support is provided in front of and behind these valves.

Contact STAUFF for further information.

### **Tightening Torques and Maximum Loads In Pipe Direction**



### Standard Series (DIN 3015-1:1999)

All tightening torques and maximum loads in pipe direction refer to STAUFF Clamp Bodies (profiled inside surface with tension clearance) with Cover Plates, Weld Plates and Hexagon Head Bolts according to DIN EN ISO 4014/4017 (DIN 931/933).

The max. load in pipe direction (according to DIN 3015-10:1999) is an average value, determined by three tests at +23 °C / +73.4 °F with a steel pipe according to DIN EN 10220, St37 – rolled surface – taking static friction into consideration.

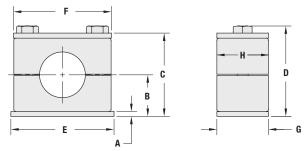
### Sliding starts when the shown values (F) are reached.

Group		Hexagon Head E	Bolt	exagon Head Bolt Polypropylene				Polyami	de (PA)			Aluminiu	ım (AL)		
		DIN EN ISO 4014/4017 (DIN 931/933) Metric Unified Coarse		Tighteni	Tightening Torque		Maximum Load in Pipe Direction F		ing Torque		ım Load Direction F	Tighteni	ng Torque		um Load Direction F
STAUFF	DIN	ISO Thread	(UNC) Thread	(N·m)	(ft·lb)	(kN)	(lbf)	(N·m)	(ft·lb)	(kN)	(lbf)	(N·m)	(ft·lb)	(kN)	(lbf)
1	0	M6	1/4-20 UNC	8	6	0,6	135	10	7	0,6	135	12	9	3,5	787
1A	1	M6	1/4-20 UNC	8	6	1,1	247	10	7	0,7	157	12	9	4,2	944
2	2	M6	1/4-20 UNC	8	6	1,3	292	10	7	0,8	180	12	9	4,3	967
3	3	M6	1/4-20 UNC	8	6	1,4	315	10	7	1,6	360	12	9	4,9	1101
4	4	M6	1/4-20 UNC	8	6	1,5	337	10	7	1,7	382	12	9	5,0	1124
5	5	M6	1/4-20 UNC	8	6	1,9	427	10	7	2,0	450	12	9	7,3	1641
6	6	M6	1/4-20 UNC	8	6	2,0	450	10	7	2,5	562	12	9	8,9	2000
7	7	M6	1/4-20 UNC	8	6	2,3	517	10	7	3,2	719				
8	8	M6	1/4-20 UNC	8	6	2,6	585	10	7	3,5	787				

### Heavy Series (DIN 3015-2:1999)

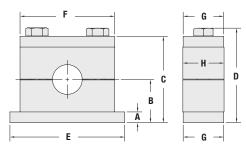
Group		Hexagon Head B	olt	Polyprop	oylene (PP)			Polyamic	le (PA)			Aluminium (AL)			
		DIN EN ISO 4014/4017 (DIN 931/933) Metric Unified Coarse		Maximum Load Tightening Torque in Pipe Direction			Tightening Torque		Maximum Load in Pipe Direction F		Tightening Torque		Maximum Load in Pipe Direction F		
STAUFF	DIN	ISO Thread	(UNC) Thread	(N·m)	(ft·lb)	(kN)	(lbf)	(N·m)	(ft·lb)	(kN)	(lbf)	(N·m)	(ft·lb)	(kN)	(lbf)
3S	1	M10	3/8-16 UNC	12	9	1,6	360	20	15	4,2	944	30	22	12,1	2720
4S	2	M10	3/8-16 UNC	12	9	2,9	652	20	15	4,5	1044	30	22	15,1	3395
5S	3	M10	3/8-16 UNC	15	11	3,3	742	25	18	5,1	1146	35	26	15,5	3485
6S	4	M12	7/16-14 UNC	30	22	8,2	1843	40	30	9,3	2090	55	41	29,5	6609
7S	5	M16	5/8-11 UNC	45	33	11,0	2472	55	41	15,8	3551	120	86	34,9	7845
8S	6	M20	3/4-10 UNC	80	59	14,0	3147	150	111	21,0	4720	220	162	50,0	11240
9S	7	M24	7/8–9 UNC	110	81	28,0	6300	200	148	32,0	7193	250	184	70,6	15871
10S	8	M30	1-1/8-7 UNC	180	133	40,0	8992	350	258	48,0	10790	500	369	84,5	18996
11S	9	M30	1-1/4-7 UNC	200	148	119,0	26752	370	273	125,0	27650	500	369	181,5	40802
12S	10	M30	1-1/4-7 UNC	270	199	168,0	37767	450	332	180,0	40465	600	443	244,5	54965

### Twin Series (DIN 3015-2:1999)


Group		Hexagon Head Bo	Polypropylene	(PP)			Polyamide (PA)				
		DIN EN ISO 4014/			Maximum Loa	d			Maximum Load		
		Metric	Unified Coarse	Tightening Torque		in Pipe Direction F		Tightening Torque		in Pipe Direction F	
STAUFF	DIN	ISO Thread	(UNC) Thread	(N·m)	(ft·lb)	(kN)	(lbf)	(N·m)	(ft·lb)	(kN)	(lbf)
1D	1	M6	1/4-20 UNC	5	4	0,9	202	5	4	0,9	202
2D	2	M8	5/16-18 UNC	12	9	2,1	472	12	9	2,2	495
3D	3	M8	5/16-18 UNC	12	9	1,9	427	12	9	2,0	450
4D	4	M8	5/16-18 UNC	12	9	2,7	607	12	9	2,9	652
5D	5	M8	5/16-18 UNC	8	6	1,7	382	8	6	2,5	562

Only for the standard clamp body materials which are listed on page 154. In case of doubt, please contact STAUFF in advance.

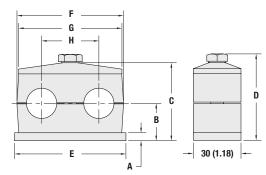
0




### **Dimensions and Weights of Clamp Assemblies**



### Standard Series (DIN 3015, Part 1)


Group		Dimensi	Dimensions ( ^{mm} / _{in} )											
			В		С		D						SP-**-PP-DP-AS	
STAUFF	DIN	Α	Profiled Design	Type H (Smooth)	Profiled Design	Type H (Smooth)	Profiled Design	Type H (Smooth)	E	F	G	Н	( ^{kg} / _{lbs} )	
4	0	3	16,5	16	33	32	37	36	31,5	28	30	30	6,20	
1	0	.12	.65	.63	1.30	1.26	1.46	1.42	1.24	1.10	1.18	1.18	13,64	
4.4	4	3	16,5	16	33	32	37	36	36	34	30	30	8,10	
1A	1	.12	.65	.63	1.30	1.26	1.46	1.42	1.41	1.33	1.18	1.18	17.82	
0	0	3	19,5	19	39	38	43	42	42	40,5	30	30	9,40	
2	2	.12	.77	0.75	1.54	1.50	1.69	1.65	1.65	1.59	1.18	1.18	20.68	
3	0	3	21	20,75	42	41,5	46	45,5	50	48	30	30	11,20	
2	3	.12	.83	.82	1.65	1.64	1.81	1.80	1.96	1.88	1.18	1.18	24.64	
4	4	3	24	23,75	48	47,5	52	51,5	60	57	30	30	13,70	
4	4	.12	.94	.94	1.89	1.87	2.05	2.03	2.36	2.24	1.18	1.18	30.14	
5	5	3	32	31,25	64	62,5	68	66,5	71	70	30	30	17,10	
2	5	.12	1.26	1.23	2.52	2.46	2.68	2.62	2.79	2.75	1.18	1.18	37.62	
6	6	3	36	35,25	72	70,5	76	74,5	88	86	30	30	21,30	
5	0	.12	1.42	1.39	2.83	2.78	2.99	2.94	3.46	3.38	1.18	1.18	46.86	
7	7	5	51,5	51	103	102	107	106	122	118	30	30	42,10	
1	1	.20	2.03	2.01	4.06	4.02	4.21	4.17	4.81	4.65	1.18	1.18	92.62	
8	8	5	64	63	128	126	132	130	148	144	30	30	44,00	
3	0	.20	2.52	2.48	5.04	4.96	5.20	5.12	5.83	5.67	1.18	1.18	96.80	



### Heavy Series (DIN 3015, Part 2)

Group		Dimens	ions ( ^{mm} /in)											Weight per 1 Pc.
			В		С		D			F				SPAL-**-PP-DPAL-AS
STAUFF	DIN	Α	Profiled Design	Type H (Smooth)	Profiled Design	Type H (Smooth)	Profiled Design	Type H (Smooth)	E	PP/PA/SA	AL	G	Н	( ^{kg} / _{lbs} )
3S	4	8	24	23,25	48	46,5	54,4	52,9	74	55	56	30	30,5	0,32
35	1	.31	.94	.92	1.89	1.83	2.14	2.09	2.91	2.16	2.20	1.18	1.20	.70
4S	2	8	32	31,25	64	62,5	70,4	68,9	86	70	70	30	30,5	0,40
45	2	.31	1.26	1.23	2.52	2.46	2.77	2.72	3.39	2.76	2.76	1.18	1.20	.88
5S	2	8	38	37	76	74	82,4	80,4	100	85	85	30	30,5	0,49
55	3	.31	1.50	1.46	2.99	2.91	3.24	3.17	3.94	3.35	3.35	1.18	1.20	1.08
<u></u>	4	10	54,5	53,5	109	107	116,5	114,5	140	115	120	45	45	1,21
6S	4	.39	2.15	2.11	4.29	4.21	4.59	4.51	5.51	4.53	4.72	1.77	1,77	2.66
70	-	10	70		140		150		180	154	152	60	60	2,30
7S	5	.39	2.76		5.51		5.91		7.09	6.06	5.98	2.36	2,36	5.06
00	0	15	99		198		210,5		226	206	208	80	80	5,56
8S	6	.59	3.90		7.80		8.29		8.90	8.11	8.19	3.15	3.15	12.26
00	7	15	115		230		245		270	251	255	90	91	7,97
9S	7	.59	4.53		9.06		9.65		10.63	9.88	10.04	3.54	3.58	17.58
100	0	25	160		320		338,7		340	336	326	120	120	22,16
10S	8	.98	6.30		12.60		13.33		13.39	13.22	12.83	4.72	4.72	48.75
11S	9	30	235		470		488,7		520	470	470	160	162	54,11
115	9	1.18	9.25		18.50		19.24		20.47	18.50	18.50	6.30	6.38	119.04
100	10	30	295		590		608,7		680	630	630	180	182	77,40
12S	10	1.18	11.61		23.23		23.96		26.77	24.80	24.80	7.09	7.16	170.28

### **Dimensions & Weights of Clamp Assemblies**



### Twin Series (DIN 3015, Part 3)

Group		Dimensions	( ^{mm} /in)										Weight per 100 Pcs.
			В		С		D						SP- <b>**</b> / <b>**</b> -PP-GD-AS
STAUFF	DIN	Α	Profiled Design	Type H (Smooth)	Profiled Design	Type H (Smooth)	Profiled Design	Type H (Smooth)	E	F	G	Н	( ^{kg} / _{lbs} )
1D	1	3	16,5	16,25	37	36,5	41	40,5	37	36	34	20	7,60
IU	1	.12	.65	.64	1.46	1.44	1.61	1.59	1.46	1.42	1.34	.79	16.72
2D	2	5	18,5	18,25	39	38,5	44	43,5	55	53	52	29	13,50
20	2	.20	.73	.72	1.54	1.52	1.73	1.71	2.17	2.09	2.05	1.14	29.70
3D	3	5	23,5	23,25	49	48,5	54	53,5	70	67	65	36	17,70
30	3	.20	.93	.92	1.93	1.91	2.13	2.11	2.76	2.64	2.56	1.42	38.94
4D	4	5	25	24	52	50	57	55	85	80	79	45	20,40
40	4	.20	.98	.94	2.05	1.97	2.24	2.17	3.35	3.15	3.11	1.77	44.88
5D	5	5	31,5	31	65	64	70	69	110	106	102	56	27,70
50	5	.20	1.24	1.22	2.56	2.52	2.76	2.72	4.33	4.17	4.02	2.20	60.94

### Standard Series (DIN 3015, Part 1)

#### Clamp Bodies (Polypropylene / Polyamide)

Group STAUFF	DIN	Quantity per Bag (in Pcs.)	0
1 - 6	0 - 6	25	3
7 + 8	7 + 8	10	1

#### **Clamp Bodies** (Aluminium)

Group		Quantity per Bag
STAUFF	DIN	(in Pcs.)
1 - 5	0 - 5	25
6	6	10

#### Weld Plates (Type SP) Cover Plates (Type DP)

Group STAUFF	DIN	Quantity per Bag (in Pcs.)
1 - 6	0 - 6	25
7 + 8	7 + 8	10

#### Hexagon Rail Nut (Type SM) Channel Rail Adaptor (Type CRA)

- 8	Group STAUFF	DIN	Quantity per Bag (in Pcs.)
	1 - 8	0 - 8	50

### Heavy Series (DIN 3015, Part 2)

#### Clamp Bodies (Polypropylene / Polyamide)

Group		Quantity per Bag
STAUFF	DIN	(in Pcs.)
3S - 6S	1 - 4	20
7S	5	10
8S - 12S	6 - 10	1

#### Clamp Bodies (Aluminium)

Group		Quantity per Bag
STAUFF	DIN	(in Pcs.)
3S - 6S	1 - 4	20
7S	5	10
8S - 12S	6 - 10	1

### Weld Plates (Type SPAL) Cover Plates (Type DPAL)

Group		Quantity per Bag
STAUFF	DIN	(in Pcs.)
3S - 6S	1 - 4	20
7S	5	10
8S - 12S	6 - 10	1

### Mounting Rail Nut (Type GMV) Channel Rail Adaptor (Type CRA)

Group STAUFF	DIN	Quantity per Bag (in Pcs.)
3S - 6S	1 - 4	40

### Twin Series (DIN 3015, Part 3)

**Packaging Units (Selection)** 

Clamp Bodies (Polypropylene / Polyamide)

Group STAUFF	DIN	Quantity per Bag (in Pcs.)
1D - 4D	1 - 4	25
5D	5	10

#### Weld Plates (Type SP) Cover Plates (Type GD)

### Group Quantity per Bac

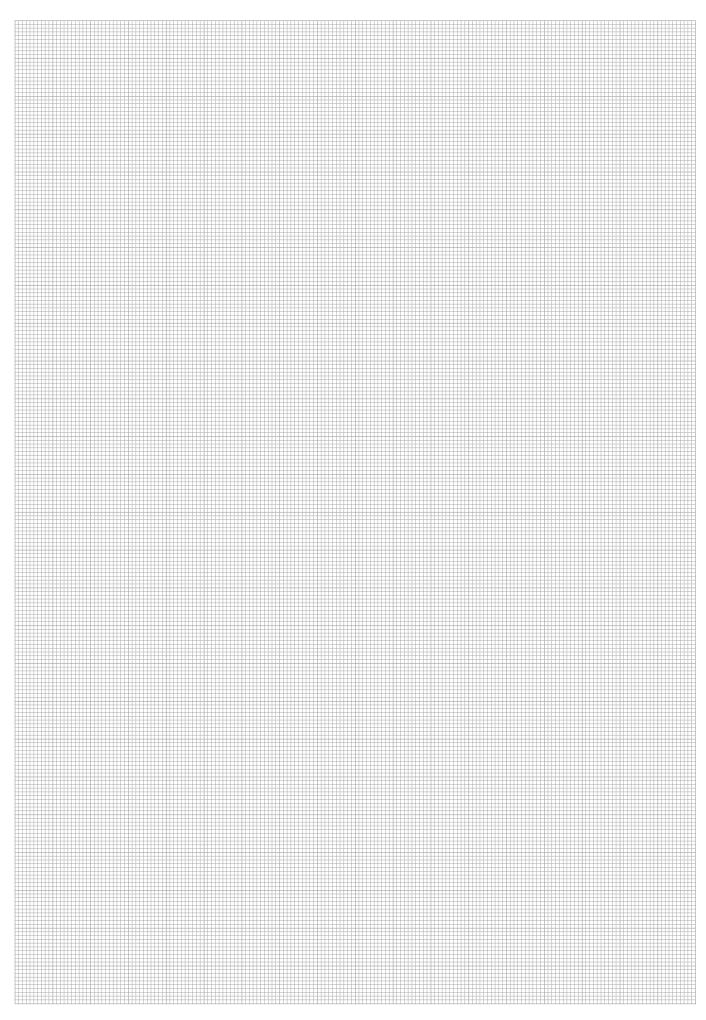
STAUFF	DIN	(in Pcs.)
1D - 4D	1 - 4	25
5D	5	10

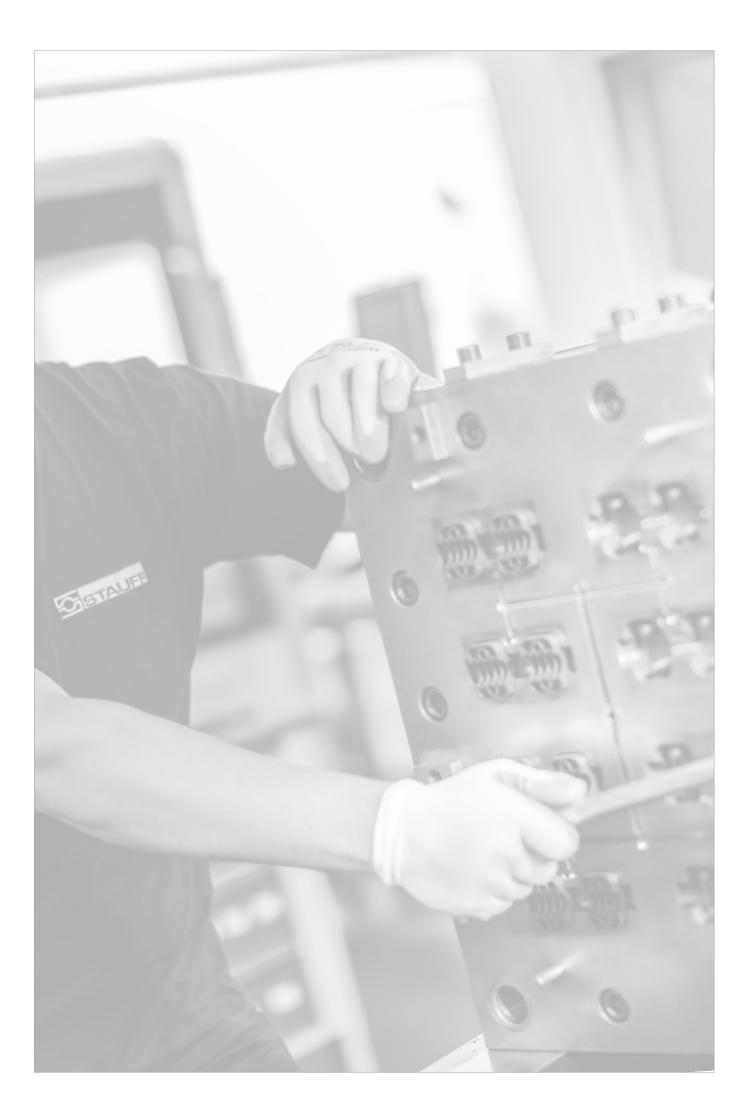

#### Hexagon Rail Nut (Type SM) Channel Rail Adaptor (Type CRA)

Group STAUFF	DIN	Quantity per Bag (in Pcs.)
1D	1	50
2D - 5D	2 - 5	25

Contact STAUFF and ask for standard packaging units for further components or special packaging options.

www.stauff.com/1/en/#163




Catalogue 1 - Edition 08/2022

0









Product-Specific Abbreviations	168
Global Contact Directory	170

### **Product-Specific Abbreviations**

Abbreviation	Product Category	Product Description	Page
ACT	STAUFF ACT Clamps: Anti-Corrosion Technology	Clamp Body - Standard Series	74
ACT	STAUFF ACT Clamps: Anti-Corrosion Technology	Clamp Body - Twin Series	82
٩F	Standard Series according to DIN 3015, Part 1	Stacking Bolt	29
AF	Heavy Series according to DIN 3015, Part 2	Stacking Bolt	47
٩F	Twin Series according to DIN 3015, Part 3	Stacking Bolt	61
AF	Heavy Twin Series	Stacking Bolt	68
AG	Other Types of Clamps	Agriculture Twin Series	150
AL	Technical Appendix	Standard Clamp Body Material	154
AS	Standard Series according to DIN 3015, Part 1	Hexagon Head Bolt	26
AS	Heavy Series according to DIN 3015, Part 2	Hexagon Head Bolt	45
AS	Twin Series according to DIN 3015, Part 3	Hexagon Head Bolt	59
AS	Heavy Twin Series	Hexagon Head Bolt	68
AS	Light Series	Hexagon Head Bolt	115
BSP	Standard Series according to DIN 3015, Part 1	Bridge Weld Plate	22
CC	Standard Series according to DIN 3015, Part 1	Clamp Body - Compact Design	19
СНС	Standard Series according to DIN 3015, Part 1	Clamp Body for Conduit Hoses	18
CRA	Standard Series according to DIN 3015, Part 1	Channel Rail Adaptor	25
CRA	Heavy Series according to DIN 3015, Part 2	Channel Rail Adaptor	43
CRA	Twin Series according to DIN 3015, Part 3	Channel Rail Adaptor	58
CRA	Heavy Twin Series	Channel Rail Adaptor	68
DIN1592	Metal DIN Clamps	Heavy Saddle with Tension Clearance - Single-Bolt Design	138
DIN1592	Metal DIN Clamps	Heavy Saddle with Tension Clearance - Two-Bolt Design	139
DIN1595	Metal DIN Clamps	Light Saddle with Tension Clearance - Single-Bolt Design	139
DIN1597	Metal DIN Clamps	Light Saddle with Tension Clearance - Two-Bolt Design	140
DIN 1557 DIN 3567-A	Metal DIN Clamps	Metal Pipe Clamp with Tension Clearance	141
DIN3567-A	Metal DIN Clamps	Metal Pipe Clamp with Tension Clearance (Extended to One Side)	130
DIT-SR6-SWG	STAUFF SWG: Stud Welding System	Distance Tube	95
DKS	Construction Series	Construction Series Clamp	95
DKSV			
DRSV	Construction Series	Construction Series Clamp (for Anchor Bolt Fastening)	145
	Standard Series according to DIN 3015, Part 1	Cover Plate	26
DPAL	Heavy Series according to DIN 3015, Part 2	Cover Plate for Single Clamps	44
DPAS	Heavy Series according to DIN 3015, Part 2	Cover Plate for Double Clamps	44
DPAS	Heavy Twin Series	Cover Plate	67
DPL	Light Series	Cover Plate	119
DS	Other Types of Clamps	Compact Twin Series	150
DSP	Standard Series according to DIN 3015, Part 1	Twin Weld Plate	21
EP	Standard Series according to DIN 3015, Part 1	Insert	28
EPDM	Technical Appendix	Standard Clamp Insert Materials	155
ES	Standard Series according to DIN 3015, Part 1	Insert	28
FB	Flat Steel and Round Steel U-Bolt Clamps	Flat Steel U-Bolt	126
GD	Twin Series according to DIN 3015, Part 3	Cover Plate	58
GMV	Heavy Series according to DIN 3015, Part 2	Mounting Rail Nut	42
GMV	Heavy Twin Series	Mounting Rail Nut	68
IS	Standard Series according to DIN 3015, Part 1	Socket Cap Screw	28
IS	Heavy Series according to DIN 3015, Part 2	Socket Cap Screw	45
IS	Twin Series according to DIN 3015, Part 3	Socket Cap Screw	59
KS	Construction Series	Construction Series Clamp	144
KSV	Construction Series	Construction Series Clamp (for Anchor Bolt Fastening)	145
LBBU	Light Series	Clamp Body - Single Design	112
LBBU	Light Series	Clamp Body - Twin Design	113
LBBU-DP	Light Series	Cover Plate	115
LBBU-HUE	Light Series	Sleeve	114
LBBU-SP	Light Series	Weld Plate	114
LB	Light Series	Clamp Body - Single Design	116
LBG	Light Series	Clamp Body - Twin Design	117
LBU	Light Series	Clamp Body - Twin Design	117
LI	Standard Series according to DIN 3015, Part 1	Slotted Head Screw	28
LN	Light Series	Clamp Body - Single Design	118
LNGF	Light Series	Clamp Body - Twin Design	119
LNUF	Light Series	Clamp Body - Twin Design	119
NRC	Standard Series according to DIN 3015, Part 1	Noise Reduction Clamp	17



### **Product-Specific Abbreviations**

Abbreviation	Product Category	Product Description	Page
PA	Technical Appendix	Standard Clamp Body Material	154
PA-V0	Technical Appendix	Special Clamp Body Material	156
PP	Technical Appendix	Standard Clamp Body Material	154
PP6853	Technical Appendix	Special Clamp Body Material	156
PP-DA	Technical Appendix	Special Clamp Body Material	156
PP-V0	Technical Appendix	Special Clamp Body Material	156
RAP	Standard Series according to DIN 3015, Part 1	Group Weld Plate	21
RAP	Twin Series according to DIN 3015, Part 3	Group Weld Plate	55
RAP-MGR	Standard Series according to DIN 3015, Part 1	Multi-Group Weld Plate	23
RB	Flat Steel and Round Steel U-Bolt Clamps	Round Steel U-Bolt	128
RBD	Flat Steel and Round Steel U-Bolt Clamps	Round Steel U-Bolt (DIN 3570, Type A)	132
RF	Other Types of Clamps	Pipe / Tube Bushing	151
RI	Standard Series according to DIN 3015, Part 1	Elastomer Insert	16
RI	Heavy Series according to DIN 3015, Part 2	Elastomer Insert	39
	· · · · · · · · · · · · · · · · · · ·		
RI	Heavy Twin Series	Clamp Body with Elastomer Inserts	66
RUK	Flat Steel and Round Steel U-Bolt Clamps	Plastic Pipe Saddle (Short) for Flat Steel U-Bolts	126
RUK	Flat Steel and Round Steel U-Bolt Clamps	Plastic Pipe Saddle (Short) for Round Steel U-Bolts	128
RUL	Flat Steel and Round Steel U-Bolt Clamps	Plastic Pipe Saddle (Long) for Round Steel U-Bolts	130
SA	Technical Appendix	Standard Clamp Body Material	154
SA	Technical Appendix	Standard Clamp Insert Materials	155
SA-V0	Technical Appendix	Special Clamp Body Material	156
SCS	Other Types of Clamps	Channel Rail	149
SI	Standard Series according to DIN 3015, Part 1	Safety Washer	27
SI	Heavy Series according to DIN 3015, Part 2	Safety Washer	46
SI	Twin Series according to DIN 3015, Part 3	Safety Locking Plate	60
SI	Heavy Twin Series	Socket Cap Screw	68
SIG	Standard Series according to DIN 3015, Part 1	Safety Locking Plate	29
SIP	Heavy Series according to DIN 3015, Part 2	Safety Locking Plate	47
SIP	Heavy Twin Series	Safety Locking Plate	68
SIV	Twin Series according to DIN 3015, Part 3	Safety Locking Plate	60
SM	Standard Series according to DIN 3015, Part 1	Hexagon Rail Nut	24
SM	Twin Series according to DIN 3015, Part 3	Hexagon Rail Nut	56
SM	Standard Series according to DIN 3015, Part 1	Hexagon Rail Nut	24
SM	Twin Series according to DIN 3015, Part 3	Hexagon Rail Nut	56
SP	Standard Series according to DIN 3015, Part 1	Weld Plate	20
SP	Twin Series according to DIN 3015, Part 3	Single Weld Plate	55
	· · · · · · · · · · · · · · · · · · ·	•	
SPAD	Heavy Twin Series	Weld Plate	67
SPAL	Heavy Series according to DIN 3015, Part 2	Weld Plate for Single Clamps	40
SPAL-DUEB	Heavy Series according to DIN 3015, Part 2	Elongated Weld Plate for Single Clamps	41
SPAS-DUEB	Heavy Series according to DIN 3015, Part 2	Weld Plate for Double Clamps	40
SPAS-DUEB	Heavy Series according to DIN 3015, Part 2	Elongated Weld Plate for Double Clamps	41
SPC	Other Types of Clamps	Cushion Clamp	148
SPV	Standard Series according to DIN 3015, Part 1	Elongated Weld Plate	20
STC	Other Types of Clamps	Cushion Clamp	148
STSV	Heavy Series according to DIN 3015, Part 2	Mounting Rail	42
STSV	Heavy Twin Series	Mounting Rail	68
SWG-AGS	STAUFF SWG: Stud Welding System	Distance Adaptor	95
SWG-CTH-11-M6	STAUFF SWG: Stud Welding System	Cable Tie Holder	93
SWG-CTH-30-M6-1	STAUFF SWG: Stud Welding System	Cable Tie / Tension Belt Holder	93
SWG-CTH-30-M6-2	STAUFF SWG: Stud Welding System	Cable Tie / Tension Belt Holder	93
SWG-DIP	STAUFF SWG: Stud Welding System	Distance Plate for DIN 3015 Clamps	93
SWG-GC	STAUFF SWG: Stud Welding System	Ground Cable	95
SWG-SF	STAUFF SWG: Stud Welding System	Weld Stud with Female Thread	92
SWG-SR6	STAUFF SWG: Stud Welding System	Stud Retainer	95
SWG-WG	STAUFF SWG: Stud Welding System	Weld Gun - Arc Ignition	94
SWG-WI06	STAUFF SWG: Stud Welding System	·	94
		Weld Inverter	
SWG-WI06-Starterkit	STAUFF SWG: Stud Welding System	Starterkit Mounting Dail	94
TS	Standard Series according to DIN 3015, Part 1	Mounting Rail	24
TS	Twin Series according to DIN 3015, Part 3	Mounting Rail	57
VK	Standard Series according to DIN 3015, Part 1	Clamp Body - Rectangular Design for Proximity Switches	19
WSP	Standard Series according to DIN 3015, Part 1	Angled Weld Plate	22
ZR	Saddle / Piggyback Clamps	Custom-Designed Saddle / Piggyback Clamps	122
ZR-518	Saddle / Piggyback Clamps	Saddle / Piggyback Clamp	122



### **Global Contact Directory**

STAUFF products and services are globally available through wholly-owned subsidiaries and a tight network of authorised distributors and representatives in all major industrial regions of the world.

Contact information on this page may be subject to changes and additions over time. Frequently updated and complete contact information can always be found at www.stauff.com

### Germany



Walter Stauffenberg GmbH & Co. KG Im Ehrenfeld 4 58791 Werdohl www.stauff.com/contact

#### www.stauff.com



Meinerzhagen Production Site Neugrünenthal 58540 Meinerzhagen



Neuenrade-Küntrop Logistics Centre

Wasserburgstraße 35

58809 Neuenrade



Plettenberg-Ohle Production Site Lennestraße 2 58840 Plettenberg



Meinerzhagen Production Site Am Rottland 7 58540 Meinerzhagen



STAUFF Digital Phoenixplatz 3 44263 Dortmund

### Europe

#### France

#### STAUFF S.A.S.

230, Avenue du Grain d'Or Z.I. de Vineuil - Blois Sud 41354 Vineuil-cedex Tel.: +33 2 54 50 55 50 Fax: +33 2 54 42 29 19 E-Mail: direction@stauffsa.com www.stauff.fr

#### **Russian Federation**

#### STAUFF LLC

Building 1 19, Leninskaya Sloboda Moscow, 115280 Tel.: +7 495 276 16 50 Fax: +7 495 276 16 51 E-Mail: sales@stauff.ru www.stauff.ru

Further branch offices in Engels, Volzhskiy, Magnitogorsk, Nizhny Novgorod and St. Petersburg.

#### Ireland

#### STAUFF UK Ltd. Block B, 9 Ferguson Drive

Knockmore Hill Industrial Estate Lisburn, County Antrim, BT28 2EX Tel.: +44 2892 60 69 00 Fax: +44 2892 60 26 88 E-Mail: sales@stauffireland.com www.stauff.co.uk

### **United Kingdon**

#### STAUFF UK Ltd.

500, Carlisle Street East Off Downgate Drive Sheffield, S4 8BS Tel.: +44 114 251 85 18 Fax: +44 114 251 85 19 E-Mail: sales@stauff.co.uk www.stauff.co.uk

### Italy

STAUFF Italia s.r.l Via Borima 21 (Frazione Borima) 23867 Suello (LC)

Tel.: +39 031 65 84 94 Fax: +39 031 65 50 05 E-Mail: sales@stauff.it www.stauff.it

#### STAUFF UK Ltd.

Badentoy Avenue Badentoy Industrial Estate Portlethen, Aberdeen, AB12 4YB Tel.: +44 1224 78 61 66 Fax: +44 1224 78 61 77 E-Mail: sales@stauffscotland.co.uk www.stauff.co.uk

Catalogue 1 - Edition 08/2022

#### **Poland**

STAUFF Polska Sp. z o.o. Miszewko 43 A 80-297 Banino

Tel.: +48 58 660 11 60 Fax: +48 58 629 79 52 E-Mail: sales@stauff.pl www.stauff.pl

#### STAUFF UK Ltd.

Unit 9, Southampton Trade Park Third Avenue, Millbrook Southampton, SO15 0AD Tel: +44 2380 69 87 00 Fax: +44 2380 69 87 01 E-Mail: sales@stauffsouthampton.co.uk www.stauff.co.uk





### Appendix

### **Global Contact Directory**



### **North America**

#### Canada

STAUFF Canada Ltd. 866 Milner Avenue Scarborough Ontario M1B 5N7 Tel.: +1 416 282 46 08 Fax: +1 416 282 30 39 E-Mail: sales@stauffcanada.com www.stauffcanada.com

#### **United States**

**STAUFF Corporation** 7 Wm. Demarest Place Waldwick, 07463-1542 New Jersey Tel.: +1 201 444 78 00 Fax: +1 201 444 78 52 E-Mail: sales@stauffusa.com www.stauffusa.com

Further branch office in Canton, Michigan.

### **South America**

#### Brazil

**STAUFF Brasil Ltda.** Avenida Gupê 10767 Galpão 2 - Bloco A Barueri, São Paulo, CEP 06422-120 Tel.: +55 11 47 72 72 00 Fax: +55 11 47 72 72 10 E-Mail: stauff@stauffbrasil.com **www.stauffbrasil.com** 

### Asia

#### China

#### **STAUFF CHINA**

Building 8, No. 1698, Minyi Road Songjiang District, Shanghai, 201612 Tel.: +86 21 68 18 70 00 Fax: +86 21 68 18 71 36 E-Mail: info@stauff.com.cn www.stauff.com.cn

### Singapore

**STAUFF (SEA) Pte. Ltd.** 128 Joo Seng Road #02-01 Singapore 368356 Tel.: +65 62 44 61 68 E-Mail: sales_sg@stauff.com www.stauff.com.sg Further branch offices in Beijing, Changsha, Chengdu, Changchun, Chongqing, Jinan, Harbin, Guangzhou, Shenyang, Wuhan, Xian and Xuzhou.

Thailand

**STAUFF (Thailand) Co., Ltd.** 10 Soi On-Nut 74/4 Pravet District Bangkok 10250 Tel.: +66 2 721 73 23 / 24 Fax: +66 2 721 73 35 E-Mail: sales@stauff.co.th www.stauff.co.th

#### India

**STAUFF India Pvt. Ltd.** Gat no. 26/1 & 27, Sanghar Warehousing Pune - Nagar Road Lonikand - 412216 Tel.: +91 20 6731 4900 Fax: +91 20 6731 4905 E-Mail: sales@stauffindia.com **www.stauffindia.com** 

#### Vietnam

STAUFF Vietnam Ltd. 2nd Floor, CT-IN Building #435 Hoang Van Thu Street Tan Binh District, Ho Chi Minh City Tel.: +84 8 3948 10 41 / 42 Fax: +84 8 3948 10 44 E-Mail: sales@stauff.com.vn www.stauff.com.vn

#### Korea

**STAUFF Korea Ltd.** 105, Hwajeonsandan 5-ro Gangseo-gu Busan, 46739 Tel.: +82 51 266 6666 Fax: +82 51 266 8866 E-Mail: info@stauff.co.kr **www.stauff.co.kr** 

### **Oceania**

### Australia

STAUFF Corporation Pty Ltd 24-26 Doyle Avenue Unanderra NSW 2526

Tel.: +61 2 4271 9000 Fax: +61 2 4271 8432 E-Mail: sales@stauff.com.au www.stauff.com.au Further branch offices in Adelaide, Brisbane, Melbourne and Sydney.

### **New Zealand**

**STAUFF Corporation (NZ) Ltd.** Unit D, 103 Harris Road East Tamaki, Auckland 2013

Tel.: +64 9 912 1530 Fax: +64 9 912 1531 E-Mail: sales @stauff.co.nz www.stauff.co.nz

www.stauff.com/1/en/#171

Catalogue 1 - Edition 08/2022

#### Introduction

Standard Series according to DIN 3015, Part 1

Heavy Series according to DIN 3015, Part 2

Twin Series according to DIN 3015, Part 3

Heavy Twin Series

STAUFF ACT Clamps: Anti-Corrosion Technology

STAUFF SWG: Stud Welding System

STAUFF Bond: Adhesive Bonded Fastening

Custom-Designed Special Clamps

Light Series

Saddle / Piggyback Clamps

Flat Steel and Round Steel U-Bolt Clamps

Metal DIN Clamp

**Construction Series** 

Other Types of Clamps

Technical Appendix

Appendix

## 

Catalogue 1 STAUFF Clamps



### Germany

Walter Stauffenberg GmbH & Co. KG Im Ehrenfeld 4 58791 Werdohl

STAUFF products and services are globally available through wholly-owned subsidiaries and a tight network of authorised distributors and representatives in all major industrial regions of the world.

Contact STAUFF

www.stauff.com/contact